Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (5) : 649-654     DOI:
Orginal Article |
Empirical research on enterprise micro-blogs' word-of-mouth of Sina Weibo
Jing ZHANG1,2,Jinghua HUANG1,2(),Bo LI2,Wei YAN2
1. Research Center for Contemporary Management, Tsinghua University, Beijing 100084, China
2. School of Economics and Management, Tsinghua University, Beijing 100084, China
Download: PDF(1386 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Information about a company' micro-blog is often spread by word-of-mouth. This paper uses a company micro-blog word-of-mouth model to analyze the factors affecting the number of retweets of a micro-blog, based on word-of-mouth marketing theory and a product type model. The number of retweets of a company micro-blog information is affected by the number of fans and the product type. This study uses crawled data of a company micro-blog to estimate the correlation coefficients using a panel data model. This study shows that not only do the number of fans and the increasing number of an enterprise micro-blogs influence the number of retweets, but they also have positive autocorrelation. The product type also influences the number of retweets, with greater influence for products the user has personally used than for products seen in searches.

Keywords company micro-blog      word-of-mouth      retweets      product type     
ZTFLH:     
Fund: 
Issue Date: 15 May 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jing ZHANG
Jinghua HUANG
Bo LI
Wei YAN
Cite this article:   
Jing ZHANG,Jinghua HUANG,Bo LI, et al. Empirical research on enterprise micro-blogs' word-of-mouth of Sina Weibo[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 649-654.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I5/649
  
变量 含义
粉丝数
FANSi, t-1
i家企业微博在第t-1天的粉丝数
新增粉丝数
FANS_INCi, t
i家企业微博第t天的新增粉丝数
转发数
REPOSTi, t
i家企业微博第t天所发微博的当天被转发数(包括一级、二级转发)
前一天转发数
REPOSTi, t-1
i家企业微博第t-1天所发微博的当天被转发数(包括一级、二级转发)
产品类型
EXPERIENCEi
i家企业生产的产品类型(1表示体验型, 0表示搜索型)
节假日
HOLIDAYt
t天是否为节假日(1表示周六日、圣诞、元旦、春节, 0表示其它)
发文数
POSTi, t
i家企业微博在第t天的发微博数
微博总数
SUM_POSTi, t
i家企业微博截至到第t天的发微博总数
  
产品类型 企业类型 数目
体验型产品 食品类 12
交通类 9
化妆品类 6
服务类 5
日用品类 6
首饰珠宝 1
小计 39
搜索型产品 服装鞋帽 20
电子产品类 3
小计 23
总计 62
  
变量 固定效应模型估计系数 标准差
REPOSTi, t-1 0.134*** 0.04
FANS_INCi, t 0.049*** 0.013
FANSi, t-1 -0.001*** 0.000 6
HOLIDAYt -48.45*** 14.49
POSTi, t 19.39*** 3.66
SUM_POSTi, t -0.015 0.033
  
变量 固定效应模型估计系数 标准差
REPOSTi, t-1 0.138*** 0.04
FANS_INCi, t 0.052*** 0.015
HOLIDAYt -47.38*** 14.38
POSTi, t 19.65*** 3.68
SUM_POSTi, t -0.06 0.048
  
变量 混合回归模型估计系数 标准差
REPOSTi, t-1 0.406*** 0.062
FANS_INCi, t 0.034*** 0.013
FANSi, t-1 0.000 6*** 0.00008
EXPERIENCEt 31.67*** 12.89
HOLIDAYt -43.93*** 13.45
POSTi, t 17.67*** 2.06
SUM_POSTi, t -0.0017 0.005
  
[1] Burton S, Soboleva A. Interactive or reactive? Marketing with Twitter[J]. Journal of Consumer Marketing, 2011, 28(7): 491-499.
url: http://dx.doi.org/10.1108/07363761111181473
[2] Malhotra A, Malhotra C K, See A. How to get your messages retweeted [J]. MIT Sloan Management Review, 2012, 53(2): 61-66.
[3] 金永生, 王睿, 陈祥兵. 企业微博营销效果和粉丝数量的短期互动模型[J]. 管理科学, 2011, 24(4): 71-83. JIN Yongsheng, WANG Rui, CHEN Xiangbing. The short-term interaction model of enterprise micro-blog and the number of fans[J]. Management Science, 2011, 24(4): 71-83. (in Chinese)
[4] Godes D, Mayzlin D. Using online conversations to study word-of-mouth communication[J]. Marketing Science, 2004, 23(4): 545-560.
url: http://dx.doi.org/10.1287/mksc.1040.0071
[5] Duan W, Gu B, Whinston A B. Do online reviews matter? An empirical investigation of panel data[J]. Decision Support Systems, 2008, 45(4): 1007-1016.
url: http://dx.doi.org/10.1016/j.dss.2008.04.001
[6] Trusov M, BucklinR E, Pauwels K. Effects of word-of-mouth versus traditional marketing: Findings from an internet social networking site[J]. Journal of Marketing, 2009, 73(5): 90-102.
url: http://dx.doi.org/10.1509/jmkg.73.5.90
[7] Lin Z, Goh K Y. Measuring the business value of online social media content for marketers [C]// Proceedings of the Thirty Second International Conference on Information Systems. Shanghai: Association for Information Systems, 2011.
[8] Nelson P. Advertising as information[J].Journal of Political Economy, 1974, 82(4): 729-754.
url: http://dx.doi.org/10.1086/260231
[9] Nelson P. Information and customer behavior[J].Journal of Political Economy, 1970, 78(2): 311-329.
url: http://dx.doi.org/10.1086/259630
[10] Huang P, Lurie N H, Mitra S. Searching for experience on the web: An empirical examination of consumer behavior for search and experience goods[J]. Journal of Marketing, 2009, 73(2): 55-69.
url: http://dx.doi.org/10.1509/jmkg.73.2.55
[11] Nair H S, Manchanda P, Bhatia T. Asymmetric social interactions in physician prescription behavior: The role of opinion leaders[J]. Journal of Marketing Research, 2010, 47(5): 883-895.
url: http://dx.doi.org/10.1509/jmkr.47.5.883
[12] 陈强. 高级计量经济学及Stata应用 [M]. 北京: 高等教育出版社, 2010: 312-337. CHEN Qiang. Advanced Econometrics and Stata Applications [M]. Beijing: Higher Education Press, 2010: 312-337. (in Chinese)
[1] DENG Qing, MA Yefeng, LIU Yi, ZHANG Hui. Prediction of retweet counts by a back propagation neural network[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(12): 1342-1347.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd