Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (6) : 750-755     DOI:
Orginal Article |
Development of a lumped-mass dummy chest model with multi-directional biofidelity
Xinghua LAI1,2,Chen XU3,Chunsheng MA1(),Qing ZHOU1,Jinhuan ZHANG1
1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
2. Suzhou Automobile Research Institute (Xiangcheng), Tsinghua University, Suzhou 215000, China
3. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
Download: PDF(1954 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Existing crash test dummies are commonly designed to work in a specific loading direction. Without validation of their responses in other directions, say with oblique forces, the use of such dummies to evaluate injury risks of occupants in complex loading conditions is questionable. This paper describes a conceptual dummy thorax structure which can function in pure frontal, pure lateral and oblique 60˚ loading directions by properly positioning spring-damper modules inside the thorax structure. The dynamic behavior of the thorax to these three different directions is simulated using lumped-mass spring damper models and by building a simplified two-dimensional finite element dummy chest model that couples all three directions. The results show that the dummy thorax model can work in multiple loading directions. The validated mathematical model is reliable, with potential to be used in thorax injury studies for multiple/complex crash loading conditions, including oblique impact.

Keywords crash test dummy      chest      oblique      mechanical response     
Issue Date: 15 June 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xinghua LAI
Chen XU
Chunsheng MA
Qing ZHOU
Jinhuan ZHANG
Cite this article:   
Xinghua LAI,Chen XU,Chunsheng MA, et al. Development of a lumped-mass dummy chest model with multi-directional biofidelity[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(6): 750-755.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I6/750
  
  
  
  
模型 速度 K1 K2 C1 C2
m·s-1 kN/m kN/m N/(m·s-1) N/(m·s-1)
侧向 4.3 120 120 280 290
侧向[12] 4.3 180 210 146 219
正向 6.7 110 79 350 390
斜向 4.5 75 35 400 520
  
  
  
  
  
  
冲击方向 K/(kN·m-1) C/(N·(m·s-1)-1)
正向X 80 100
斜向X 35 100
侧向X 30 100
3向Y, Z 10
  
  
  
  
[1] Nirula R, Pintar F A. Identification of vehicle components associated with severe thoracic injury in motor vehicle crashes: A CIREN and NASS analysis[J]. Accident Analysis & Prevention, 2008, 40(1): 137-141.
[2] Yoganandan N, Pintar F A, Gennarelli T A, et al. Chest deflections and injuries in oblique lateral impacts[J]. Traffic Injury Prevention, 2008, 9(2): 162-167.
url: http://dx.doi.org/10.1080/15389580701775942
[3] Shaw J M, Herriott R G, McFadden J D, et al. Oblique and lateral impact response of the PMHS thorax[J]. Stapp Car Crash Journal, 2006, 50: 147-167.
[4] Brown G. Oblique and Lateral Impact Response Characteristics of the Denuded PMHS Thorax [D]. Columbus, OH: Ohio State University, 2008.
[5] Noureddine A, Eskandarian A, Digges K. Computer modeling and validation of a Hybrid III dummy for crashworthiness simulation[J]. Mathematical and Computer Modelling, 2002, 35: 885-893.
url: http://dx.doi.org/10.1016/S0895-7177(02)00057-2
[6] Rangarajan N, Shams T, Artis M, et al. Oblique and side impact performance of the THOR dummy [C]// Proceedings of the 2000 International IRCOBI Conference on the Biomechanics of Impact. Montpellier, France, 2000: 31-40.
[7] Yoganandan N, Pintar F A. Responses of side impact dummies in sled tests[J]. Accident Analysis & Prevention, 2005, 37(3): 495-503.
[8] Kapoor T, Altenhof W, Snowdon A, et al.A numerical investigation into the effect of CRS misuse on the injury potential of children in frontal and side impact crashes[J]. Accident Analysis & Prevention, 2011, 43(4): 1438-1450.
[9] Schneider L W, Haffner M P, Eppinger R H, et al.Development of an Advanced ATD Thorax System for Improved Injury Assessment in Frontal Crash Environments [R]. SAE World Congress. Paper No. 922520. 1992.
[10] NHTSA. CFR 49 Part 572: Anthropomorphic Test Devices[S]. 2010.
[11] ISO/TR9790. Road Vehicles Anthropomorphic Side Impact Dummy: Lateral Impact Response Requirements to Assess the Bio-Fidelity of the Dummy[S]. International Standards Organization, American National Standards Institute. New York, NJ, 1999.
[12] Shi Y B, Wu J P, Nusholtz G S. A Data-Based Model of the Impact Response of the SID [R]. SAE World Congress, Paper No.2000-01-0635, 2000.
[1] YAO Yina, LI Cong, TAO Zhenxiang, YANG Rui. Experimental study of the dynamic characteristics of an oblique impact of a water droplet[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(2): 129-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd