Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (6) : 763-768     DOI:
Orginal Article |
Data reconciliation for sensor fault monitoring
Xiaolong JIANG,Pei LIU(),Zheng LI
State Key Laboratory of Control and Simulation of Power System and Generation Equipments, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(2289 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Data reconciliation method is used to improve sensor fault detection, identification and data rebuilding for a high pressure feedwater heater and extraction steam pipe system in a 1 000 MW coal-ired power generation unit. The dominant factor modeling method is used to build the characteristic constraint relationships between the parameters. A case study shows that this method can efficiently detect, identify and rebuild data after sensor faults with an average relative error in the rebuilt data of 2.42%.

Keywords sensor fault monitoring      data reconciliation      thermal power plant     
Issue Date: 15 June 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaolong JIANG
Pei LIU
Zheng LI
Cite this article:   
Xiaolong JIANG,Pei LIU,Zheng LI. Data reconciliation for sensor fault monitoring[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(6): 763-768.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I6/763
  
  
  
  
  
  
特性参数 测定系数
R2
均方根
误差
平均相对
误差/%
#1高加
UA1/UA2
0.990 1/0.962 1 19.41/15.45 0.92/1.85
#2高加
UA1/UA2
0.989 9/0.925 4 27.56/15.81 1.02/2.75
#3高加
UA1/UA2
0.985 7/0.957 2 9.90/18.90 0.95/2.08
给水管道
(0.5ξ/A2)
0.965 8 7.92 0.53
#1抽汽管道
(0.5ξ/A2)
0.787 4 23.40 1.09
#2抽汽管道
(0.5ξ/A2)
0.893 7 19.37 2.38
#3抽汽管道
(0.5ξ/A2)
0.368 5 29.30 5.86
  
  
  
  
  
  
[1] 司风琪, 周建新, 仇晓智, 等. 独立成分分析方法在电站热力过程数据检验中的应用[J]. 中国电机工程学报, 2008, 28(26): 77-81. SI Fengqi, ZHOU Jianxin, QIU Xiaozhi, et al.Application of independent component analysis on the data validation of thermodynamic system in power plant[J].Proceedings of the CSEE, 2008, 28(26): 77-81. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-ZGDC200826015.htm
[2] 仇韬, 张清峰, 丁艳军, 等. PCA在非线性系统传感器故障检测和重构中的应用[J]. 清华大学学报: 自然科学版, 2006, 46(5): 708-711. QIU Tao, ZHANG Qingfeng, DING Yanjun, et al.Nonlinear sensor fault detection and data rebuilding based on principle component analysis[J].J Tsinghua Univ: Sci and Tech, 2006, 46(5): 708-711. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-QHXB200605024.htm
[3] 邱天, 丁艳军, 吴占松. 基于主元分析的故障可检测性的统计指标比较[J]. 清华大学学报: 自然科学版, 2006, 46(8): 1447-1450. QIU Tian, DING Yanjun, WU Zhansong. Sensor fault detection statistics based on principal component analysis[J]. J Tsinghua Univ: Sci and Tech, 2006, 46(8): 1447-1450. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-QHXB200608026.htm
[4] Bagajewicz M, JIANG Qiyou, Sanchez M. Performance evaluation of PCA tests in serial elimination strategies for gross error identification[J]. Chemical Engineering Comunications, 2013, 183(1): 119-139.
[5] Sharifi R, Langari R. Isolability of faults in sensor fault diagnosis[J].Mechanical Systems and Signal Processing, 2011, 25: 2733-2744.
url: http://dx.doi.org/10.1016/j.ymssp.2011.02.015
[6] 李蔚, 盛德仁, 陈坚红, 等. 双重BP神经网络组合模型在实时数据预测中的应用[J]. 中国电机工程学报, 2007, 27(17): 94-97. LI Wei, SHENG Deren, CHEN Jianhong, et al.The application of double BP neural network combined forecasting model in real-ime data predicting[J].Proceedings of the CSEE, 2007, 27(17): 94-97. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-ZGDC200717018.htm
[7] 董学育, 刘志远, 陈来九. 基于人工神经元网络的测量数据正确性的验证方法在发电厂控制系统中的应用研究[J]. 中国电机工程学报, 1999, 19(12): 46-50. DONG Xueyu, LIU Zhiyuan, CHEN Laijiu. A study on the validation of measured data based on the ANN and its application in the control system for power plant[J]. Proceedings of the CSEE, 1999, 19(12): 46-50. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-ZGDC199912010.htm
[8] 王雷, 张瑞青, 盛伟, 等. 基于支持向量机的回归预测和异常数据检测[J]. 中国电机工程学报, 2009, 29(8): 92-96. WANG Lei, ZHANG Ruiqing, SHENG Wei, et al.Regression forcast and abnormal data detection based on support vector regression[J].Proceedings of the CSEE, 2009, 29(8): 92-96. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-ZGDC200908020.htm
[9] 鲍文, 于达仁, 王伟, 等. 基于关联规则的火电厂传感器故障检测[J]. 中国电机工程学报, 2003, 23(12): 170-174. BAO Wen, YU Daren, WANG Wei, et al.Sensor fault detection in thermal power plants based on association rule[J].Proceedings of the CSEE, 2003, 23(12): 170-174. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-ZGDC200312031.htm
[10] Narasimhan S, Jordache C. Data Reconciliation & Gross Error Detection [M]. Houston, TX: Gulf Publishing Company, 2000.
[11] 刘福国, 王学同, 苏相河, 等. 基于系统测量冗余的电厂异常运行数据检测与校正[J]. 中国电机工程学报, 2003, 23(7): 204-207. LIU Fuguo, WANG Xuetong, SU Xianghe, et al.Detection and reconciliation on the abnormal operationa data based on redundancy measurement in a power plant[J]. Proceedings of the CSEE, 2003, 23(7): 204-207. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-ZGDC200307040.htm
[12] 吕崇德. 热工参数测量与处理 [M]. 北京: 清华大学出版社, 2001. L Chongde. Thermal Parameter Measurement and Processing [M]. Beijing: Tsinghua University Press, 2001. (in Chinese)
[13] LIN Tsungpo. An Adaptive Modeling and Simulation Environment for Combined-ycle Data Reconciliation and Degredation Estimation [D]. Atlanta, GA: Georgia Institute of Technology, 2008.
[14] 杨波, 李政. 火电机组热力系统主导因素建模方法研究[J]. 中国电机工程学报, 2005, 25(24): 96-102. YANG Bo, LI Zheng. Dominant factor modeling method for the thermal system of power station[J].Proceedings of the CSEE, 2005, 25(24): 96-102. (in Chinese)
url: http://118.145.16.217/magsci/article/article?id=8211942
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd