Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (6) : 781-786     DOI:
Orginal Article |
Heat transfer characteristics of a fractal particle in a low Reynolds number flow
Junwu YU,Rong HE(),Yanguo ZHANG
Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(1223 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Current heat transfer coefficient formulae for particles are derived from data for spheres. However, a real particle is not a sphere, but an irregular body, so the assumption that the real particle approximates a sphere is questionable in mathematical models. Fractal models, which give shapes similar to real particles, are produced by the random walk method to calculate the heat transfer coefficient of a factual particle in a low Reynolds number flow using kinetic theory and gas diffusion theory. The particle diameter is less than 5 μm. Simulations show that the spherical assumption is not suitable for the fractal particle with a maximum error of 82%. Nu is then greatly influenced by the specific area and fractal dimension.

Keywords fractal particle      kinetic theory      molecular diffusion      heat transfer coefficient     
Issue Date: 15 June 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Junwu YU
Rong HE
Yanguo ZHANG
Cite this article:   
Junwu YU,Rong HE,Yanguo ZHANG. Heat transfer characteristics of a fractal particle in a low Reynolds number flow[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(6): 781-786.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I6/781
  
  
  
计算条件 参数
计算网格数 100×100×100
单位网格长度dl/m 1.0×10-7
时间步长dt/s 1.0×10-10
计算压力p/Pa 1.01×105
气体种类 空气
气体导热系数λ/(W·m-2·K-1) 0.024
气体主流温度Tg/K 298
固体颗粒自身发热量Qc/W 2.1×10-16
碰撞系数ε 根据球颗粒计算结果确定
  
编号 等效直径
d/10-7m
分形维数
df
比表面积
s/m-1
Nu
1 47.129 1.038 2 606 506 1.962
2 46.994 1.035 2 867 080 1.539
3 46.801 1.034 3 294 332 1.375
4 46.559 1.030 3 725 234 1.164
5 46.294 1.041 4 300 757 0.990
6 47.287 1.033 4 698 997 0.921
7 46.876 1.050 5 303 618 0.809
8 46.189 1.056 6 067 137 0.694
9 46.770 1.057 6 796 349 0.614
10 46.863 1.069 7 600 208 0.536
11 47.067 1.070 8 479 320 0.496
12 46.560 1.080 9 501 609 0.434
13 47.265 1.091 10 504 268 0.405
14 47.177 1.080 11 919 894 0.390
15 46.278 1.089 13 195 106 0.363
16 47.102 1.096 15 211 813 0.354
17 46.825 1.105 16 606 890 0.370
18 46.615 1.107 18 738 593 0.410
19 46.191 1.125 20 391 450 0.452
20 46.343 1.141 21 462 920 0.515
21 46.163 1.194 23 637 034 0.734
22 46.156 1.253 24 813 829 1.138
  
  
  
[1] Kreith F, Bohn M S. Principles of Heat Transfer[M]. 4th Ed. New York: Harper & Row, 1986.
[2] Kramers H. Heat-transfer from spheres to flowing media[J]. Physica, 1946, 12(1): 61-65.
url: http://dx.doi.org/10.1016/S0031-8914(46)80024-7
[3] Whitaker S. Forced convection heat-transfer correlations for flow in pipes, past plat plates, single cylinders, single spheres and flow in packed bids and tube bundles[J]. AICHEJ, 1972, 18(3): 361-367.
url: http://dx.doi.org/10.1002/aic.690180219
[4] Ranz W E, Marshall W R. Evaporation from drops, part I and part II [J]. Chemical Engineering Progress, 1952, 48(3): 141-146, 173-180.
[5] Solomon P R, Hamblen D G, Serio M A, et al, A character method and model for predicting coal conversion behavior[J]. Fuel, 1993, 72(4): 469-488.
url: http://dx.doi.org/10.1016/0016-2361(93)90106-C
[6] He R, Sato J, Chen C. Modeling char combustion with fractal pore effects[J]. Combustion Science and Technology, 2002, 174(1): 19-37.
[7] WU Yuxin, ZHANG Jiansheng, Smith P J, et al.Three-dimensional simulation for an entrained flow coal slurry gasifier[J]. Energy & Fuels, 2010, 24(12): 1156-1163.
[8] Hamel S, Krumm W. Mathematical modeling and simulation of bubbling fluidized bed gasifiers[J]. Powder Technology, 2001, 120(1): 105-112.
url: http://dx.doi.org/10.1016/S0032-5910(01)00356-4
[9] 李汝辉. 传质学基础 [M]. 北京: 北京航空学院出版社, 1987. LI Ruhui. Fundamentals of Mass Transfer [M]. Beijing: Beihang University Press, 1987. (in Chinese)
[10] 张济忠. 分形[M]. 北京: 清华大学出版社, 1995. ZHANG Jizhong. Fractals [M]. Beijing: Tsinghua University Press, 1995. (in Chinese)
[11] HE Rong, XU Xuchang, CHEN Changhe, et al.Evolution of pore fractal dimensions for burning porous chars[J]. Fuel, 1998, 77(12): 1291-1295.
url: http://dx.doi.org/10.1016/S0016-2361(98)00046-5
[12] 曹立勇, 何榕. 基于Sierpinski 地毯的气体扩散规律[J].清华大学学报: 自然科学版, 2009, 49(5): 711-714. CAO Liyong, HE Rong. Gas diffudion in a Sierpinski gasket[J]. J Tsinghua Univ: Sci and Tech, 2009, 49(5): 711-714. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-QHXW200905020.htm
[13] 曹立勇. 分形孔隙内气体扩散规律及对CaO 孔内反应影响的研究 [D]. 北京: 清华大学, 2009. CAO Liyong. Study of Gas Diffusion in Fractal Media and the Effect on the Reaction in CaO [D]. Beijing: Tsinghua University, 2009. (in Chinese)
[14] 梁占刚. 多孔介质孔隙分形生成[D]. 北京: 清华大学, 2004. LIANG Zhangang. Fractal Generation of Pores for Porous Media [D]. Beijing: Tsinghua University, 2004. (in Chinese)
[15] Bird G A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows [M]. Oxford: Clarendon Press, 1994.
[16] 韩德刚, 高盘良. 化学动力学基础 [M]. 北京: 北京大学出版社, 1987. HAN Degang, GAO Panliang. Fundamentals of Chemical Kinetics [M]. Beijing: Peking University Press, 1987.(in Chinese)
[17] Jeans J. An Introduction to the Kinetic Theory of Gases [M]. Cambridge: Cambridge University Press, 1952.
[18] 陈群. 煤焦孔隙的分形结构与燃烧特性的研究 [D]. 北京: 清华大学, 2004. CHEN Qun. Study on the Fractal Pore Structure and Combustion Kinetics of Chars [D]. Beijing: Tsinghua University, 2004. (in Chinese)
[19] 章熙民, 任泽霈, 梅飞鸣. 传热学[M]. 北京: 中国建筑工业出版社, 1993. ZHANG Ximin, REN Zepei, MEI Feiming. Convective Heat Transfer [M]. Beijing: China Architecture & Building Press, 1993. (in Chinese)
[1] ZHANG Xinghao, LIN Dantong, HU Liming. Numerical simulations of hydrodynamic dispersion based on an equivalent pore network model[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1906-1914.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd