Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (6) : 799-804     DOI:
Orginal Article |
Trajectory planning for redundant robots for internal surface spraying
Junyi SHAO1,Chuanqing ZHANG1,Yan CHEN1,2,Ken CHEN1,3()
1. Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, China
2. Department of Petroleum Supply Engineering, Logistical Engineering University, Chongqing 400016, China
3. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
Download: PDF(1375 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

This article describes the trajectory planning for redundant robots for spraying the inner surface of a curved pipe. The complex inner surface constraints and the redundant robot kinematics are modeled with the inverse kinematics solved to plan the redundant robot trajectories for inner surface spraying which can apply to all types of pipes. Simulations give collision-free spraying trajectories for various conditions. Spraying tests show that the redundant robots complete the collision-free spraying operations. The coating thickness and uniformity both satisfy the requirements.

Keywords redundant robot      spray      trajectory planning     
Issue Date: 15 June 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Junyi SHAO
Chuanqing ZHANG
Yan CHEN
Ken CHEN
Cite this article:   
Junyi SHAO,Chuanqing ZHANG,Yan CHEN, et al. Trajectory planning for redundant robots for internal surface spraying[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(6): 799-804.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I6/799
  
  
  
  
  
  
  
  
[1] Conkur E S. Path planning using potential fields for highly redundant manipulators[J]. Robotics and Autonomous Systems, 2005, 52(2/3): 209-228.
url: http://dx.doi.org/10.1016/j.robot.2005.03.005
[2] Haghshenas J M. An effective manipulator trajectory planning with obstacles using virtual potential field method [C]// 2007 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2007. Lefkada, Greece, 2007: 1573-1578.
[3] Barraquand J, Latombe J C. Robot motion planning: A distributed representation approach[J]. Int J Rob Research, 1991, 10: 628-649.
url: http://dx.doi.org/10.1177/027836499101000604
[4] Hanafusa H, Yoshikawa T, Nakamura Y. Analysis and control of articulated robot arms with redundancy [C]// IFAC 8th Triennal World Congress. Kyoto, Japan, 1981, 4: 1927-1932.
[5] Gilbert E G, Johnson D W, Keerthi S S. A fast procedure for computing the distance between complex objects in three-dimensional space[J]. IEEE J of Robotics and Automation, 1988, 4(2): 193-202.
url: http://dx.doi.org/10.1109/56.2083
[6] Cameron S A, Culley R K. Determining the minimum translational distance between two convex polyhedral [C]// Proc of IEEE Intl Conf on Robotics and Automation. San Francisco, CA, USA, 1986: 591-596.
[7] Mayorga R V, Ma K S, Wong A K C, et al. A fast approach for the path planning of telerobotic manipulators [C]// Proc IEEE International Conference on Robotics and Automation. Atlanta, GA, USA, 1993, 2: 289-294.
[8] Choi S, Kim B K. Obstacle avoidance for redundant manipulators using directional-collidability/temporal collidability measure[J]. J of Intelligent and Robotic Systems, 2000, 28: 213-229.
url: http://dx.doi.org/10.1023/A:1008131702701
[9] Zlajpah L, Nemec B. Kinematic control algorithms for on-line obstacle avoidance for redundant manipulators [C]// IEEE Intl Conf on Intelligent Robots and Systems, EPFL. Lausanne, Switzerland, 2002: 1898-1903.
[10] Minami M, Takahara M. Avoidance manipulability for redundant manipulators [C]// IEEE/ASME Intl Conf on Advanced Intelligent Mechatronics. Port Island Kobe, Japan, 2003: 314-319.
[11] Tanaka H, Minami M, Mae Y. Trajectory tracking of redundant manipulators based on avoidance manipulability shape index [C]// 2005 IEEE/RSJ Intl Conf on Intelligent Robots and Systems (IROS 2005). Alberta, Canada, 2005: 4083-4088.
[12] Ikeda K, Tanaka H, Zhang T X, et al. On-line optimization of avoidance ability for redundant manipulator [C]// 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2006). Beijing, China, 2006: 592-597.
[13] Le Boudec B, Saad M, Nerguiziam V. Modeling and adaptive control of redundant robots[J]. Mathematics and Computers in Simulation, 2006, 71( 4-6): 395-403.
url: http://dx.doi.org/10.1016/j.matcom.2006.02.010
[14] Maciejewski A A, Klein C A. Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments[J]. Inter J Robotics Research, 1985, 4(3): 109-117.
url: http://dx.doi.org/10.1177/027836498500400308
[15] Whitney D E. The mathematics of coordinated control of prosthetic arms and manipulators[J]. Trans ASME J Dynamic Systems Measurement and Control, 1972, 122: 306-309.
[16] Whitney D E. Resolved motion rate control of manipulators and human prostheses [J].IEEE Trans Man-Machine Syst, 1969, MMS-10(2): 47-53.
[17] Klein C A, Kee K B. The nature of drift in pseudoinverse control of kinematically redundant manipulators[J]. IEEE Trans on Robotics and Automation, 1989, 5(2): 231-234.
url: http://dx.doi.org/10.1109/70.88043
[18] Duarte F B M, Tenreiro Machado J A. Motion chaos in the pseudoinverse control of redundant robots [C]// Proceedings of 6th International Workshop on Advanced Motion Control. Nagoya, Japan, 2000: 624-629.
[19] Liegeois A. Automatic supervisory control of configuration and behavior of multibody mechanisms[J]. IEEE Trans SMG, 1977, 7(12): 868-871.
[20] Baillieul J. Kinematic programming alternatives for redundant manipulators [C]// Proc of IEEE Inter Conf on Robotics and Automation. St. Louis, MO, USA, 1985: 722-728.
[21] Baillieul J. Avoiding obstacles and resolving kinematic redundancy [C]// Proc of IEEE Inter Conf on Robotics and Automation. San Francisco, CA, USA, 1986: 1689-1704.
[22] Cheng F T, Chen T H, Sun Y Y. Efficient algorithm for resolving manipulator redundancy: The compact QP method [C]// Proc of IEEE Int Conf on Robotics and Automation. Nice, France, 1992: 508-513.
[23] Cheng F T, Chen T H, Wang Y S, et al. Obstacle avoidance for redundant manipulators using the compact QP method [C]// Proc of IEEE Int Conf on Robotics and Automation. St. Paul, MN, USA, 1993, 3: 262-269.
[24] Seereeram S, Wen J T. A global approach to path planning for redundant manipulators [C]// Proc of IEEE Int Conf on Robotics and Automation. St. Paul, MN, USA, 1993, 2: 283-288.
[25] Agrawal O P, Xu Y. On the global optimum path planning for redundant space manipulators[J]. IEEE Trans on Systems, Man and Cybernetics, 1994, 24(9): 1306-1316.
url: http://dx.doi.org/10.1109/21.310507
[1] JIANG Shuai, SONG Libin, CHEN Xiaoyong, ZHANG Peng, LIU Kecheng, CHANG Junhu. Special automatic spraying system for civil aircraft parts based on visual recognition[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(10): 1650-1657.
[2] LI Yaxin, WANG Guolei, ZHANG Jianhui, TIAN Xinliang, AN Jing, CHEN Ken. Obstacle avoidance algorithm for redundant robots based on collision feedback[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 408-415.
[3] YANG Ning, LIU Yi, QIAO Yu, TAN Yaosheng, ZHU Zhenyang. Intelligent spray control for the concrete curing of mass concrete bins[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(7): 724-729.
[4] Xiaotong HUA,Simin ZHANG,Xingjie LIU,Zhiliang CHEN,Guolei WANG,Ken CHEN. Optimization of spraying trajectory based on elliptical double β spraying gun model[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(12): 985-992.
[5] ZHANG Simin, WANG Guolei, YU Qiankun, HUA Xiaotong, SONG Libin, CHEN Ken. Image processing analyses of the factors influencing the angle of an atomizer spray cone[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(2): 103-110.
[6] GUO Jichang, ZHU Zhiming, WANG Xin, MA Guorui. Numerical solution of the inverse kinematics and trajectory planning for an all-position welding robot[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(3): 292-297.
[7] ZHU Zhiming, GUO Jichang, MA Guorui, LIU Bo. Kinematics analysis and trajectory planning for a welding robot for girth welding of box-type steel structures[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(8): 785-791.
[8] WANG Guolei, YI Qiang, MIAO Dongjing, CHEN Ken, WANG Liqiang. Multivariable coating thickness distribution model for robotic spray painting[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(3): 324-330.
[9] FU Xiaoxin, JIANG Yongheng, HUANG Dexian, WANG Jingchun, HUANG Kaisheng. On-road trajectory planning based on optimal computing budget allocation[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(3): 273-280.
[10] Yulong PAN, Guolei WAN, Li ZHU, Yan CHEN, Ken CHEN. Optimization of spray gun speed for pipe painting robots[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(2): 212-216.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd