Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2015, Vol. 55 Issue (1) : 134-140     DOI:
Orginal Article |
Preconditioning discontinuous Galerkin method for low Mach number flows
Qinxue TAN,Jing REN(),Hongde JIANG
Gas Turbine Research Center, Department of Thermal Engineering,Tsinghua University, Beijing 100084, China
Download: PDF(1454 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The finite volume preconditioning method is applied to the discontinuous Galerkin method for three-dimensional viscid low Mach number flows. The traveling wave case is used to verify that the preconditioning discontinuous Galerkin method is suitable for viscid low Mach number flows and that the method retains the original discrete accuracy of the discontinuous Galerkin method. The results for four classical cases (lid driven incompressible flow, a Blasius boundary layer, a backward facing step with turbulent flow and natural convection in a square enclosure) validate the applicability of the preconditioning discontinuous Galerkin method and the reliability of the program. The flow around a NACA0012 airfoil for three different Mach numbers show that the convergence speed is independent of the Mach number.

Keywords discontinuous Galerkin method      precondition method      low Mach number      Quadrature free      matrix operation     
Issue Date: 20 January 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qinxue TAN
Jing REN
Hongde JIANG
Cite this article:   
Qinxue TAN,Jing REN,Hongde JIANG. Preconditioning discontinuous Galerkin method for low Mach number flows[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(1): 134-140.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2015/V55/I1/134
  
  
  
变量 网格尺度h 精度n
1/9 1/16 1/25 1/36
u 0.059 01 0.015 39 0.005 43 0.002 99 2.182
v 0.059 01 0.015 39 0.005 43 0.002 99 2.182
p 0.086 36 0.025 41 0.011 89 0.004 07 2.141
  
  
  
  
  
  
  
  
  
Ra 不同变量误差ε/%
Umax Wmax Nuaver Numax Numin
103 -1.64 -1.69 -0.13 -0.10 -0.01
104 -1.08 -1.79 -0.04 -0.06 -0.32
105 -1.14 -1.67 -0.01 -0.10 -0.27
106 -1.12 -1.50 0.30 -2.19 -1.06
  
  
  
[1] Reed W H, Hill T R. Triangular Mesh Methods for the Neutron Transport Equation, Report LA-UR-73-479 [R]. New Mexico, USA: Los Alamos Scientific Laboratory, 1973
[2] 刘儒勋,舒其望. 计算流体力学的若干新方法 [M]. 北京: 科学出版社, 2003. LIU Ruxun, Shu C W. Kinds of New Methods in Computational Fluid Dynamics [M]. Beijing: Science Press, 2003.(in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-ZRZZ198106011.htm
[3] Kroll N. ADIGMA—A European project on the development of adaptive higher-order variational methods for aerospace applications [C]// 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando, USA: The American Institute of Aeronautics and Astronautics (AIAA) 2009.
[4] 谭勤学,任静,蒋洪德. 全矩阵无积分间断有限元实现[J]. 中国科技论文,2013,8(8): 776-779 TAN Qinxue, REN Jing, JIANG Hongde. Quadrature-free implementation of discontinuous Galerkin method using the matrix product formula[J]. China Science Paper, 2013, 8(8): 776-779
url: http://www.cnki.com.cn/Article/CJFDTotal-ZKZX201308015.htm
[5] Cockburn B, Hou S, Shu C W, et al.The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case[J]. Mathematics of Computation, 1990, 54(190): 545-581.
[6] 李雪松,顾春伟,徐建中. 新型高低速流统一算法及其叶轮机应用[J]. 航空学报, 2007, 28(6): 1334-1338. LI Xuesong, GU Chunwei, XU Jianzhong. New general scheme for flows at all speeds and it's application to turbomachinery[J]. Acta Aeronau Tica ET Astronau Tica Sinica, 2007, 28(6): 1334-1338.(in Chinese)
url: http://d.wanfangdata.com.cn/Conference_6239865.aspx
[7] 杨果. 直接间断有限元方法求解奇异摄动问题 [D]. 长沙:湖南师范大学,2009 YANG Guo. The Direct Discontinuous Galerkin Methods for Singularly Perturbed Problems [D]. Changsha: Hunan Normal University, 2009
[8] Nigro A, De Bartolo C, Hartmann R, et al.Discontinuous Galerkin solution of preconditioned Euler equations for very low Mach number flows[J]. International Journal for Numerical Methods in Fluids, 2010, 63(4): 449-467.
[9] Gustavson J, Weiss J M, Smith W A. Preconditioning applied to variable and constant density flows[J]. AIAA Journal, 1995, 33(11): 2050-2057.
url: http://dx.doi.org/10.2514/3.12946
[10] Brown D L. Performance of under-resolved two-dimensional incompressible flow simulations, II[J]. Journal of Computational Physics, 1997, 138(2): 734-765.
url: http://dx.doi.org/10.1006/jcph.1997.5843
[11] Ghia U, Ghia K N, Shin C T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[J]. Journal of Computational Physics, 1982, 48(3): 387-411.
url: http://dx.doi.org/10.1016/0021-9991(82)90058-4
[12] Driver D M, Driver D M, Seegmiller H L. Features of a reattaching turbulent shear layer in divergent channel flow[J]. AIAA Journal, 1985, 23(2): 163-171.
url: http://dx.doi.org/10.2514/3.8890
[13] de Vahl Davis G. Natural convection of air in a square cavity: a bench mark numerical solution[J]. International Journal for Numerical Methods in Fluids, 1983, 3(3): 249-264.
url: http://dx.doi.org/10.1002/fld.1650030305
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd