Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2015, Vol. 55 Issue (1) : 14-20     DOI:
Orginal Article |
Simulation and applicability of thermal response tests in energy piles
Hongxian GUO(),Xiangyu LI,Xiaohui CHENG
Department of Civil Engineering, Tsinghua University,Beijing 100084, China
Download: PDF(1402 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Thermal response tests (TRT) are used to investigate the thermal properties of the ground for dimensioning borehole heat exchangers. This study analyzes the versatility and limitations of TRT in energy piles. Several analytical solutions are presented for the temperature response of the borehole system with a finite element model (FEM) used to study the effect of convection for different pile diameters, different types of pipes and different heating powers. The results show that the TRT tests can be used in energy piles but the minimum duration of the tests increases with increasing pile diameter, while the types of pipes and the heating power have no effects. The accuracy of the FEM model was verified by simulations of Beijing TRT tests on CFG (cement fly-ash gravel) piles with the results indicating that the high heating power is not appropriate. TRT tests may take hundreds of hours for large diameter piles (larger than 400 mm); thus, lab tests for the thermal parameters are suggested using undisturbed borehole samples.

Keywords ground source heat pumps (GSHP)      energy piles      thermal response test (TRT)      heat transfer model      test duration     
Issue Date: 20 January 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hongxian GUO
Xiangyu LI
Xiaohui CHENG
Cite this article:   
Hongxian GUO,Xiangyu LI,Xiaohui CHENG. Simulation and applicability of thermal response tests in energy piles[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(1): 14-20.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2015/V55/I1/14
  
  
  
算例 几何参数
l/m d/mm D/mm dout/mm din/mm
1 30 150 120 25 20
2 30 600 400 25 20
3 30 800 600 25 20
  

参数
热导率/(W·m-1·K-1) 密度/(kg·m-3) 热容/(kJ·kg-1·K-1) 流量/(m3·h-1) 加热功率/(W·m-1)
λs λc ρs ρc cs cc Q q
取值 2.0 1.5 2 000 2 400 1.0 0.96 0.6 70
  
  
  
  
时间/h 计算综合热导率/(W·m-1·K-1)
1U埋管 2U埋管 3U埋管
3D FEM 2D FEM ILS 3D FEM 2D FEM ILS 3D FEM 2D FEM ILS
10 48 2.69 3.80 3.19 3.10 3.80 3.19 3.16 3.80 3.19
120 240 2.08 2.14 2.13 2.17 2.14 2.13 2.10 2.14 2.13
222 322 2.06 2.08 2.08 2.11 2.08 2.08 2.06 2.08 2.08
222 422 2.06 2.07 2.07 2.10 2.07 2.07 2.07 2.07 2.07
  
  
时间/h 计算综合热导率/(W·m-1·K-1)
q=
70 W·m-1
q=
117 W·m-1
q=
210 W·m-1
48 222 2.18 2.18 2.18
222 422 2.07 2.07 2.07
  
  
深度 各土层
土样
描述
热物参数
m 密度 热容 热导率
g·cm-3 J·kg-1·K-1 W·m-1·K-1
0~1.3 素填土层 2.00 2.00 1.50
1.3~3.9 砂质粉土 1.93 1.21 1.67
3.9~4.4 粉质粘土 1.92 1.37 1.58
4.4~6.3 砂质粉土 1.97 1.21 1.67
6.3~14.2 卵石 2.50 0.78 2.20
14.2~16.3 粉质粘土 2.04 1.37 1.58
16.3~18.1 砂质粉土 2.03 1.17 1.64
18.1~20.0 卵石 2.50 0.78 2.20
  
  
  
时间/h 数据
来源
计算综合热导率/(W·m-1·K-1)
q=
97 W·m-1
q=
120 W·m-1
q=
194 W·m-1
77 96 3D
FEM
1.72 1.72 1.72
试验 1.08 1.88 4.67
77 120 3D
FEM
1.57 1.57 1.57
试验 1.71 8.86
  
[1] Brandl H. Energy foundations and other thermo-active ground structures[J]. Géotechnique, 2006, 56(2): 81-122.
url: http://dx.doi.org/10.1680/geot.2006.56.2.81
[2] Gao J, Zhang X, Liu J, et al.Numerical and experimental assessment of thermal performance of vertical energy piles: An application[J]. Applied Energy, 2008, 85(10): 901-910.
url: http://dx.doi.org/10.1016/j.apenergy.2008.02.010
[3] 桂树强, 程晓辉. 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36(6): 1087-1094. GUI Shuqiang, CHENG Xiaohui. In-situ test for structural responses of energy pile to heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1087-1094. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-YTGC201406018.htm
[4] National House-Building Council (NHBC). Efficient Design of Piled Foundations for Low Rise Housing: Design Guide [M]. Watford, UK: IHS BRE Press, 2010.
[5] Ground Source Heat Pump Association (GSHPA). Thermal Pile Design, Installation & Materials Standards[M]. Milton Keynes, UK: National Energy Centre, 2013.
[6] American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). 2011 ASHRAE Handbook: Heating, Ventilating, and Air-Conditioning Applications[M]. Atlanta, USA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2011.
[7] Loveridge F, Powrie W. Temperature response functions (G-functions) for single pile heat exchangers[J]. Energy, 2013, 57, 554-564.
url: http://dx.doi.org/10.1016/j.energy.2013.04.060
[8] Man Y, Yang H, Diao N, et al.A new model and analytical solutions for borehole and pile ground heat exchangers[J]. International Journal of Heat and Mass Transfer, 2010, 53(13): 2593-2601.
url: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.03.001
[9] Carslaw H S, Jaeger J C. Conduction of Heat in Solids [M]. Oxford, UK: Clarendon Press, 1947.
[10] Eskilson P. Thermal Analysis of Heat Extraction Boreholes [D]. Lund, Sweden: Lund University, 1987.
[11] Gehlin S E A, Hellström G. Comparison of four models for thermal response test evaluation[J]. ASHRAE Transactions, 2003, 109(1): 131-142.
[12] Thompson III W H. Numerical Analysis of Thermal Behavior and Fluid Flow in Geothermal Energy Piles [D]. Blacksburg, USA: Virginia Polytechnic Institute and State University, 2013.
[13] Loveridge F, Powrie W. Pile heat exchangers: Thermal behaviour and interactions[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2013, 166(2): 178-196.
[14] You S, Cheng X, Guo H, et al.In-situ experimental study of heat exchange capacity of CFG pile geothermal exchangers[J]. Energy and Buildings, 2014, 79: 23-31.
url: http://dx.doi.org/10.1016/j.enbuild.2014.04.021
[1] WU Jinchao, QIU Shihan, LI Muheng, WEI Xing, CHEN Bingyao, YING Kui. Kalman filtering and bio-heat transfer model based real-time MR temperature imaging for increased accuracy[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(4): 334-340.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd