Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2015, Vol. 55 Issue (1) : 21-26     DOI:
Orginal Article |
Temperature monitoring during concrete setting through cooling pipe monitors
Zheng ZUO1,Yu HU1(),Qingbin LI1,Bingfeng LI2,3,Tao HUANG1
1. State Key Laboratory of Hydroscience and Engineering,Tsinghua University, Beijing 100084, China
2. China Three Gorges Corporation, Beijing 100038, China
3. Shenzhen Pumped Storage Power Co. Ltd,Shenzhen 518115, China
Download: PDF(2241 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Temperature is an important indicator to evaluate the concrete after it has been build. Traditionally, the concrete temperature is monitored by embedded sensors, but placing these is not convenient during pouring and the sensors can fail. A calculational method that does not need embedded sensors was developed where the concrete temperature field is determined from measured cooling flow temperatures. The mathematical model, instrument layout and monitoring procedure are described in this paper. Predicted temperatures for a domestic large arch dam project compare well with actual measurements to validate the applicability of the method.

Keywords hydraulic structures      numerical monitoring      temperature field      pipe cooling     
Issue Date: 20 January 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zheng ZUO
Yu HU
Qingbin LI
Bingfeng LI
Tao HUANG
Cite this article:   
Zheng ZUO,Yu HU,Qingbin LI, et al. Temperature monitoring during concrete setting through cooling pipe monitors[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(1): 21-26.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2015/V55/I1/21
  
  
  
材料参数 取值
比热容cc/(kJ·kg-1·℃-1) 0.985
密度ρc/(kg·m-3) 2 663.0
导热系数λ/(kJ·m-1·h-1·℃-1) 7.70
散热系数β/(kJ·m-2·h-1·℃-1) 41.8
  
  
  
  
工 况 时间/s
单仓200d 36.38
单坝段225d 552.16
全坝段600d 10 226.00
全坝段1 560d 31 783.52
  
[1] United States Department of the Interior Bureau of Reclamation. Cooling of Concrete Dams: Final Reports.[M]. Washington DC, USA: United States Department of the Interior, 1949.
[2] 朱伯芳. 考虑水管冷却效果的混凝土等效热传导方程[J]. 水利学报, 1991, 22(003): 28-34. ZHU Bofang. Equivalent equation of heat conduction in mass concrete considering the effect of pipe cooling[J]. Journal of Hydraulic Engineering , 1991, 22(003): 28-34. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-SLXB199103003.htm
[3] 朱伯芳. 大体积混凝土温度应力与温度控制 [M]. 北京: 中国电力出版社, 1999 ZHU Bofang. Thermal Stresses and Temperature Control of Mass Concrete [M]. Beijing: China Electric Power Press, 1999. (in Chinese)
[4] 董福品. 考虑表面散热对冷却效果影响的混凝土结构水管冷却等效分析[J]. 水利水电技术, 2001, 32(6): 16-19. DONG Fupin. The method of equal effects of concrete cooling water pipe under the influence upon cooling effect of surface heat releasing[J]. Water Resources and Hydropower Engineering, 2001, 32(6): 16-19. (in Chinese).
url: http://www.cnki.com.cn/Article/CJFDTotal-SJWJ200106004.htm
[5] YANG Jian, HU Yu, ZUO Zheng, et al.Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes[J]. Applied Thermal Engineering , 2012, 35 : 145-156.
url: http://dx.doi.org/10.1016/j.applthermaleng.2011.10.016
[6] 黄耀英, 郑宏, 夏开文,等. 基于等效时间的混凝土水管冷却等效热传导[J]. 华中科技大学学报: 自然科学版, 2012, 40(2): 45-48. HUANG Yaoying, ZHENG Hong, XIA Kaiwen, et al.Study on equivalent heat conduct of concrete using pipe cooling and equivalent time[J]. Journal of Huazhong University of Science and Technology: Nature Science , 2012, 40(2): 45-48. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-HZLG201202012.htm
[7] 左正, 胡昱, 段云岭,等. 考虑双层异质水管的大体积混凝土施工期温度场仿真[J]. 清华大学学报: 自然科学版, 2012, 52(2): 186-189. ZUO Zheng, HU Yu, DUAN Yunling, et al.Simulation of the temperature field in mass concrete with double layers of cooling pipes during construction[J]. Journal of Tsinghua University: Science and Technology , 2012, 52(2): 186-189. (in Chinese)
[8] DL/T 5148-2001. 水工建筑物水泥灌浆施工技术规范[S]. 北京:中华人民共和国国家经济贸易委员会, 2001. DL/T 5148-2001. Construction Technology of Cement Grouting of Hydraulic Structure Specification[S]. Beijing: State Economic and Trade Commission of China, 2001. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-HSKJ201002136.htm
[9] Gilliland J A, Dilger W H. Monitoring concrete temperature during construction of the Confederation Bridge[J]. Canadian Journal of Civil Engineering , 1997, 24(6): 941-950.
[10] Shaw J J. A Case Study of Mass Concrete Construction for Midwest Boarder Bridges [D]. Ames, USA: Iowa State University, 2012.
[11] 朱伯芳. 混凝土坝的数字监控[J]. 水利水电技术, 2008, 39(2): 15-18. ZHU Bofang. Numerical monitoring of concrete dams[J]. Water Resources And Hydropower Engineering , 2008, 39(2): 15-18. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-SJWJ200802007.htm
[12] Cengel Y A. Heat and mass transfer: A practical approach 3rd ed.[M]. Boston, USA: McGraw-Hill, 2007
[13] WU Yong, Ronaldo L. Numerical implementation of temperature and creep in mass concrete[J]. Finite Elements in Analysis and Design , 2001, 37(2): 97-106.
url: http://dx.doi.org/10.1016/S0168-874X(00)00022-6
[14] 刘光廷, 胡昱, 王恩志,等. 石门子碾压混凝土拱坝温度场实测与仿真计算[J]. 清华大学学报: 自然科学版, 2002, 42(4): 539-542. LIU Guangting, HU Yu, WANG Enzhi, et al. Analysis and measurement of the temperature field in the Shimenzi RCC arch dam[J]. Journal of Tsinghua University: Science and Technology , 2002, 42(4): 539-542. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-QHXB200204031.htm
[15] ZUO Zheng, HU Yu, LI Qingbin, et al. Data mining of the thermal performance of cool-pipes in massive concrete via in-situ monitoring[J]. Mathematical Problems in Engineering , 2014, 2014(Article ID 985659): 1-15.
[16] SL 352-2006. 水工混凝土试验规程[S]. 北京:中华人民共和国水利部, 2006. SL 352-2006. Test Code for Hydraulic Concrete[S]. Beijing: Ministry of Water Resources of the People's Republic of China, 2006. (in Chinese)
[17] HU Yu, ZUO Zheng, LI Qingbin, et al.Boolean-based surface procedure for the external heat transfer analysis of dams during construction[J]. Mathematical Problems in Engineering , 2013, 2013(Article ID 175616): 1-17.
[1] QI Ningchun, NIE Qiang, LAI Jitao, CHEN Yongcan, LI Yonglong. Key technology and practice of intelligent underwater inspection in multiple scenarios of hydropower station[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1124-1134.
[2] ZHOU Huawei, ZHAO Chunju, CHEN Wenfu, ZHOU Yihong, TAN Yaosheng, LIU Quan, PAN Zhiguo, YOU Hao, LIANG Zhipeng, WANG Fang, GONG Pan. Three-dimensional temperature field analyses based on massive optical fiber temperature monitoring data in concrete dams[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(7): 738-746.
[3] ZENG Yingyu, JIANG Xiaohua. Lumped parameter thermal circuit method combined with temperature field and flow field analyses for temperature predictions of permanent magnets in motors[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(1): 67-74.
[4] SHI Jie, LI Qingbin. Size effects of concrete gravity dams based on XFEM analyses[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(4): 345-350.
[5] GUAN Liwen, YANG Liangliang, WANG Liping, CHEN Xueshang, WANG Yaohui, HUANG Ke. Modeling and analysis of intermittent cutting temperature field for the “S” test specimens[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(2): 192-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd