Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2015, Vol. 55 Issue (5) : 532-537     DOI:
AUTO MATION |
Battery DC internal resistance test method based on the constant current external characteristics and SOC
HE Zhichao1, YANG Geng1, LU Languang2, Wu Haisang1
1. Department of Automation, Tsinghua University, Beijing 100084, China;
2. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
Download: PDF(1809 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The direct current internal resistance (DCIR) is the sum of a battery's ionic and electronic resistances. The DCIR test indicates the battery's power characteristics and reflects the batteries' aging and uniformity characteristics. Thus, it is important for battery modeling and applications. This paper describes a DCIR test method based on the battery's constant current external characteristics. This method normalizes the battery's state of charge (SOC) changes for different constant current conditions. Then, the DCIR for different operating currents and SOC are obtained using constant current charge/discharge curves. This method is easier to implement than existing methods and has good accuracy.
Keywords lithium-ion battery      direct current internal resistance (DCIR)      constant current external characteristics      state of charge (SOC)     
ZTFLH:  TQ152  
  TP29  
Issue Date: 15 May 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Zhichao
YANG Geng
LU Languang
Wu Haisang
Cite this article:   
HE Zhichao,YANG Geng,LU Languang, et al. Battery DC internal resistance test method based on the constant current external characteristics and SOC[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(5): 532-537.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2015/V55/I5/532
   
   
   
   
   
   
   
   
   
[1] Linden D. Handbook of Batteries [M]. 3rd ED. New York, NY, USA: McGraw-Hill, 2001.
[2] Carter R, Cruden A, Hall P, et al. An improved lead-acid battery pack model for use in power simulations of electric vehicles [J]. IEEE Transactions on Energy Conversion, 2012, 27(1): 21-28.
[3] Gould C, Bingham C, Stone D, et al. New battery model and state-of-health determination through subspace parameter estimation and state-observer techniques [J]. IEEE Transactions on Vehicular Technology, 2009, 58(8): 3905-3916.
[4] Lu L, Han X, Li J, et al. A review on the key issues for lithium-ion battery management in electric vehicles [J]. Journal of Power Sources, 2012, 226: 272-288.
[5] He H, Xiong R, Fan J. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach [J]. Journal of Energies, 2011, 4: 582-598.
url: http://dx.doi.org/10.3390/en4040582
[6] Hu X, Li S, Peng H. Comparative study of equivalent circuit models for Li-ion batteries [J]. Journal of Power Sources, 2012, 198: 359-367.
url: http://dx.doi.org/10.1016/j.jpowsour.2011.10.013
[7] Szumanowski A, Chang Y. Battery management system based on battery nonlinear dynamics modeling [J]. IEEE Transactions on Vehicular Technology, 2008, 57(3): 1425-1432.
[8] Chen S, Gooi H, Xia N, et al. Modelling of lithium-ion battery for online energy management systems [J]. IET Electrical Systems in Transportation, 2012, 2(4): 202-210.
[9] DOE/ID-10597. PNGV Battery Test Manual Revision 3 [S]. Washington DC, USA: U.S. Department of Energy, 2001.
[10] Zhao S, Wu F, Yang L, et al. A measurement method for determination of DC internal resistance of batteries and supercapacitors [J]. Electrochemistry Communications, 2010, 12: 242-245.
url: http://dx.doi.org/10.1016/j.elecom.2009.12.004
[11] Remmlinger J, Buchholz M, Meiler M. State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation [J]. Journal of Power Sources, 2011, 196: 5357-5363.
url: http://dx.doi.org/10.1016/j.jpowsour.2010.08.035
[12] 林成涛,王军平,陈全世. 电动汽车SOC估计方法原理与应用 [J]. 电池,2004,34(5):376-278.LIN Chengtao, WANG Junping, CHEN Quanshi.Methods for state of charge estimation of EV batteries and their application [J]. Batteries, 2004, 34(5): 376-378. (in Chinese)
url: http://2010.cqvip.com/qk/92924X/200405/10835820.html
[13] Piller S, Perrin M, Jossen A. Methods for state of charge determination and their applications [J]. Journal of Power Sources, 2001, 96: 113-120.
url: http://dx.doi.org/10.1016/S0378-7753(01)00560-2
[14] adirci Y, zkazanY. Microcontroller-based on-line state-of-charge estimator for sealed lead-acid batteries [J]. Journal of Power Sources, 2004, 129: 330-342.
url: http://dx.doi.org/10.1016/j.jpowsour.2003.11.008
[15] Doerffel D, Sharkh S. A critical review of using the Peukert equation for determining the remaining capacity of lead-acid and lithium-ion batteries [J]. Journal of Power Sources, 2006, 155: 395-400.
url: http://dx.doi.org/10.1016/j.jpowsour.2005.04.030
[16] Coleman M, Lee C K, Zhu C, et al. State-of-charge determination from EMF voltage estimation: using impedance, terminal voltage, and current for lead-acid and lithium-ion batteries [J]. IEEE Transactions on Industrial Electronics, 2007, 54(5): 2550-2557.
[17] Bard A J, Faulkner L R. Electrochemical Methods Fundamentals and Applications [M]. New York, NY, USA: John Wiley & Sons Inc., 2001.
[18] 林成涛, 张宾, 陈全世, 等. 典型动力电池特性与性能的对比研究 [J]. 电源技术,2008,32(11):735-738.LIN Chengtao, ZHANG Bin, CHEN Quanshi, et al.Comparative research on characteristics and performance of typical tractive battery [J]. Chinese Journal of Power Sources, 2008, 32(11): 735-738. (in Chinese)
url: http://www.cqvip.com/qk/91137X/200811/28772242.html
[19] 李哲, 韩雪冰, 卢兰光, 等. 动力型磷酸铁锂电池的温度特性 [J]. 机械工程学报,2011, 47(18):115-120.LI Zhe, HAN Xuebing, LU Languang, et al.Temperature characteristics of power lifepo4 batteries [J]. Journal Of Mechanical Engineering, 2011, 47(18): 115-120. (in Chinese)
[20] Ouyang M, Liu G, Lu L, et al. Enhancing the estimation accuracy in low state-of-charge area: A novel onboard battery model through surface state of charge determination [J]. Journal of Power Sources, 2014, 270: 221-237.
url: http://dx.doi.org/10.1016/j.jpowsour.2014.07.090
[1] FANG Ruqing, ZHANG Na, LI Zhe. Comparison study of three porous electrode models for the forward design of lithium-ion batteries[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(10): 1055-1065.
[2] XIE Haiming, LIN Chengtao, LIU Tao, TIAN Guangyu, HUANG Yong. Piecewise tracking energy optimization approach for an extended-range electric city bus[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(5): 476-482.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd