ENVIRONMENTAL SCIENCE AND ENGINEERING |
|
|
|
|
|
Adsorption of ammonia-nitrogen on ion exchange resins |
YANG Shaoxia1, ZHANG Jingjing1, YANG Hongwei2, ZHANG Li1, GAO Pan1 |
1. School of Renewable Energy, North China Electric Power University, Beijing 102206, China;
2. School of Environment, Tsinghua University, Beijing 100084, China |
|
|
Abstract The adsorption of ammonia-nitrogen on a macro-reticular weak acid resin (D113) with a strong acid resin (001×7) was analyzed experimentally to identify the thermodynamics and kinetics of the absorption process. The result showed that: 1) increasing resin concentrations increased the ammonia removals of the two resins even though the adsorption rate decreased; 2) a basic solution increased the adsorption capacity of the two resins, and 3) the adsorption capacity of the two resins increased with temperature. The adsorption isotherm of two resin combination was fit with the Langmuir adsorption model with the kinetics close a pseudo-second equation. The process of ammonia adsorption on the resins was a spontaneous, endothermic reaction with increasing entropy.
|
Keywords
ion exchange resins
ammonia-nitrogen
adsorption
thermodynamics
kinetics
|
|
Issue Date: 15 June 2015
|
|
|
[1] |
金源, 夏建新, 张紫君. 工业废水中氨氮处理方法比较分析 [J]. 工业水处理, 2013, 33(7): 5-9.JIN Yuan, XIA Jianxin, ZHANG Zijun. Comparative analysis of treatment methods of industrial ammonia-nitrogen in wastewater [J]. Journal of Industrial Water Treatment, 2013, 33(7): 5-9. (in Chinese)
|
[2] |
刘亚敏, 郝卓莉. 高氨氮废水处理技术及研究现状 [J]. 水处理技术, 2012, 38(1): 7-11.LIU Yamin, HAO Zhuoli. Treatment technology and research status of high ammonia-nitrogen wastewater [J]. Technology of Water Treatment, 2012, 38(1): 7-11. (in Chinese)
|
[3] |
Sun F, Wang X, Li X. An innovative membrane bioreactor (MBR) system for simultaneous nitrogen and phosphorus removal [J]. Process Biochemistry, 2013, 48(11): 1749-1756.
|
[4] |
Du Q, Liu S, Cao Z, et al. Ammonia removal from aqueous solution using natural Chinese clinoptilolite [J]. Separation and Purification Technology, 2005, 44(3): 229-234.
|
[5] |
Englert A H, Rubio J. Characterization and environmental application of a Chilean natural zeolite [J]. International Journal of Mineral Processing, 2005, 75(1): 21-29.
|
[6] |
Widiastuti N, Wu H, Ang H M, et al. Removal of ammonium from greywater using natural zeolite [J]. Desalination, 2011, 277(1): 15-23.
|
[7] |
李红艳, 李亚新, 孙东刚. 处理高浓度氨氦废水的阳离子交换树脂筛选 [J]. 化工学报, 2008, 59(9): 2339-2345.LI Hongyan, LI Yaxin, SUN Donggang. Screening of cation exchange resins for treating wastewater containing high concentration ammonia [J]. JournalofChemicalIndustryandEngineering, 2008, 59(9): 2339-2345. (in Chinese)
|
[8] |
刘宝敏, 林钰. 强酸性阳离子交换树脂对焦化废水中氨氮的去除作用 [J]. 郑州工程学院学报, 2003, 24(1): 46-49.LIU Baomin, LIN Yu. Removal effect of ammonia-nitrogen by strong acid cation exchange resin from coking wastewater [J]. Journal of Zhengzhou Institute of Technology, 2003, 24(1): 46-49. (in Chinese)
|
[9] |
GB/T5476-2013. 离子交换树脂预处理方法 [S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 2013. GB/T5476-2013. Pretreatment Method of Ion Exchange Resin [S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2013. (in Chinese)
|
[10] |
Leyva-Ramos R, Monsivais-Rocha J E, Aragon-Pia A, et al. Removal of ammonium from aqueous solution by ion exchange on natural and modified chabazite [J]. Journal of Environmental Management, 2010, 91(12): 2662-2668.
|
[11] |
黄文强. 吸附分离材料 [M]. 北京: 化学工业出版社, 2005.HUANG Wenqiang. Adsorption and Separation Materials [M]. Beijing: Chemical Industry Press, 2005. (in Chinese)
|
[12] |
马荣骏. 离子交换在湿法冶金中的应用 [M]. 北京: 冶金工业出版社, 1992.MA Rongjun. Application of Ion Exchange in Hydrometallurgy [M]. Beijing: Metallurgical Industry Press, 1992. (n Chinese)
|
[13] |
周律, 赵宇, 刘力群. 负载铝离子的新型骨炭吸附剂除氟特性 [J]. 清华大学学报: 自然科学版, 2010, 50(11): 1875-1879. ZHOU Lu, ZHAO Yu, LIU Liqun. Defluoridation properties of aluminum impregnated bone charcoal adsorbent [J]. Journaol of Tsinghua University: Science and Tecnology, 2011, 50(11): 1875-1879. (in Chinese)
|
[14] |
Ghasemi Z, Seif A, Ahmadi T S, et al. Thermodynamic and kinetic studies for the adsorption of Hg (II) by nano-TiO2 from aqueous solution [J]. Advanced Powder Technology, 2012, 23(2): 148-156.
|
[15] |
张仙娥, 肖寒, 肖峰, 等. 镁铝水滑石及焙烧产物去除水中的天然有机物 [J]. 环境工程学报, 2014, 8(10): 4053-4059. ZHANG Xian'e, XIAO Han, XIAO Feng, et al. Research of removing natural organic matter in drinking water by using layered double hydroxides and its calcinations [J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4053-4059. (in Chinese)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|