Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2015, Vol. 55 Issue (7) : 790-796     DOI:
AUTOMOTIVE ENGINEERING |
Simulation on power loss of engine front end accessory belt drive systems
TAO Run, HOU Zhichao
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
Download: PDF(2584 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The effects of a power loss to the engine front end accessory belt drive systems were studied using a multi-body dynamic simulation. The mechanical parameters of the belt were found in tests with the system dynamic model then built in the commercial software Adams. The effects of the system power loss were found through a series of simulations for the key design parameters, such as the belt pre-tension, accessory loads, rotating speed belt and pulley acceleration, and fuel consumption, for typical vehicle driving cycles. The results show that the power loss increases monotonically with pre-tension, load and rotating speed and changes little with acceleration. The fuel consumption agrees well with bench tests of a drive system without any accessory loads.
Keywords belt drive      engine front end accessory      rolling resistance      torque measurement     
ZTFLH:  TH132.3+2  
Issue Date: 15 July 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TAO Run
HOU Zhichao
Cite this article:   
TAO Run,HOU Zhichao. Simulation on power loss of engine front end accessory belt drive systems[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(7): 790-796.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2015/V55/I7/790
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
[1] Gerbert B G. Power loss and optimum tensioning of V-belt drives [J]. Journal of Engineering for Industry: Transactions of ASME, 1974, 96(3): 877-885.
[2] Townsend W T, Salisbury J K. The efficiency limit of belt and cable drives [J]. Journal of Mechanisms Transmissions and Automation Design: Transactions of the ASME, 1988, 110(3): 303-307.
[3] Childs T H, Parker J E. Power transmission by flat, V and timing belt [J]. Tribological Design of Machine Elements, 1989, 15(14): 133-142.
[4] Peeken H, Fischer F. Experimental investigation of power loss and operating conditions of statically loaded belt drive [C]//Proceedings of the 1989 International Power Transmission Gearing Conference. Chicago, IL, USA: American Society of Mechanical Engineers, 1989: 15-24.
[5] Forth T, Antchak J, Fought M, et al. Optimized Engine Accessory Drive Resulting in Vehicle FE Improvement [R]. SAE 2008-01-2761, 2008.
[6] Santos L C D, Stief H, Vogelgesang F. Investigations on Friction Losses within Front End Accessory Drives [R]. SAE 2010-36-0178, 2010.
[7] Barker C R, Oliver L R, Breig W F. Dynamic Analysis of Belt Drive Tension Forces during Rapid Engine Acceleration [R]. SAE 910687, 1991.
[8] Takagishi H, Yoneguchi H, Sopouch M, et al. Simulation of Belt System Dynamics Using a Multi-Body Approach: Applications to Synchronous Belts and V-Ribbed-Belts [EB/OL]. [2014-08-20]. http://wenku.baidu.com/link?url=KEiU4G1IBL5oZ-JNNDIUKW5Sr6xzJgKCL4GDo1e R92gBLU0R8-r6uAZD9s2ckluf5-dgtA0hYvPFDub-RTKzEO-98SNpCNWB1yv6ujoOlqK.
[9] Zhu H. Finite element modal analysis of the engine front end accessory drive systems [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 1994, 208(1): 49-53.
[10] Mashhadi B, Zakeri E. Dynamical analysis and design of front engine accessory drive system [J]. International Journal of Automotive Engineering, 2011, 1(1): 38-46.
[11] 刘元冬, 王文林, 罗明军. 基于Adams发动机前端附件带传动的动态特性研究[J]. 机械传动, 2013, 37(6): 28-32.LIU Yuandong, WANG Wenlin, LUO Mingjun. Research on dynamic characteristic of belt drive system of engine front end accessory based on Adams [J].Journal of Mechanical Transmission, 2013, 37(6): 28-32. (in Chinese)
[12] Cepon G, Manin L, Boltezar M. Introduction of damping into the flexible multibody belt drive model: A numerical of experimental investigation [J]. Journal of Sound and Vibration, 2009, 324(2): 283-296.
[13] Cepon G, Manin L, Boltezar M. Experimental identification of the contact parameters between a V ribbed belt and pulley [J].Mechanism and Machine Theory, 2010, 45(10): 1424-1433.
[14] Cepon G, Boltezar M. An Advanced Numerical Model for Dynamic Simulations of Automotive Belt-Drives [R]. SAE 2010-01-1409, 2010.
[15] GB 18352.3—2005.轻型汽车污染物排放限值及测量方法 [S]. 北京: 中国人民共和国国家环境保护总局, 国家质量监督检验检疫总局, 2005.GB 18352.3—2005. Limits and Measurement Methods for Emissions from Light-Duty Vehicles [S]. Beijing: State Environmental Protection Administration, State Administration of Quality Supervision, Inspection and Quarantine, People's Republic of China, 2005. (in Chinese)
[1] Run TAO,Zhichao HOU. Measurement and curve fitting of the friction torque of rolling bearings subjected to radial loads[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(6): 744-749.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd