ELECTRONIC ENGINEERING |
|
|
|
|
|
Radial velocity estimation based on Radon transforms for SAR images of moving ground targets |
WANG Zhirui1, ZHANG Xudong1, XU Jia2 |
1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
2. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract With synthetic aperture radar (SAR), the radial velocity of a moving ground target may cause Doppler ambiguities and spectrum split, which seriously affect the detection and velocity estimates. A Radon transform (RT) based method was developed to efficiently resolve the Doppler ambiguities and spectrum split to obtain precise estimates of the Doppler centroid and radial velocity. First, the inclination angles of the range walk are determined for all possible ambiguity numbers based on the radar and platform parameters to project the ambiguity number to the inclination angle. Since the radial velocity is unknown, the RT for all prior angles are computed with the ambiguity number obtained by searching for the peak value. A Doppler spectrum detector is used to solve the spectrum split and to accurately estimate the baseband Doppler centroid using the energy balance approach. Numerical simulations demonstrate the effectiveness of this method.
|
Keywords
Doppler ambiguity
Radon transform
Doppler spectrum split
Doppler spectrum detector
|
|
Issue Date: 15 August 2015
|
|
|
[1] 保铮, 邢孟道, 王彤. 雷达成像技术 [M]. 北京: 电子工业出版社, 2005.BAO Zheng, XING Mengdao, WANG Tong. Radar Imaging Techneque [M]. Beijing: Publishing House of Electronics Industry, 2005. (in Chinese)
[2] ZHU Shengqi, LIAO Guisheng, QU Yi, et al. A new slant-range velocity ambiguity resolving approach of fast moving targets for SAR system [J].Geoscience and Remote Sensing, IEEE Transactions on, 2010, 48(1): 432-451.
[3] ZHANG Xuepan, LIAO Guisheng, ZHU Shengqi, et al. Geometry-information-aided efficient motion parameter estimation for moving-target imaging and location [J]. Geoscience and Remote Sensing Letters, IEEE, 2015, 12(1): 155-159.
[4] YU Mingcheng, XU Jia, PENG Yingning, et al. Joint estimation of Doppler centroid and rate for SAR with large range migration [J]. Radar, Sonar & Navigation, IET, 2007, 1(3): 207-212.
[5] WANG Junfeng, LIU Xingzhao. Velocity estimation of moving targets in SAR imaging [J]. Aerospace and Electronic Systems, IEEE Transactions on, 2014, 50(2): 1543-1549.
[6] ZHANG Xuepan, LIAO Guisheng, ZHU Shengqi, et al. Geometry-information-aided efficient radial velocity estimation for moving target imaging and location based on Radon transform [J]. Geoscience and Remote Sensing, IEEE Transactions on, 2015, 53(2): 1105-1117.
[7] ZHANG Xuepan, LIAO Guisheng, ZHU Shengqi, et al. Efficient compressed sensing method for moving-target imaging by exploiting the geometry information of the defocused results [J]. Geoscience and Remote Sensing Letters, IEEE, 2015, 12(3): 517-521.
[8] LI Gang, XIA Xiang-Gen, XU Jia, et al. A velocity estimation algorithm of moving targets using single antenna SAR [J]. Aerospace and Electronic Systems, IEEE Transactions on, 2009, 45(3): 1052-1062.
[9] Bamler R, Runge H. PRF-ambiguity resolving by wavelength diversity [J]. Geoscience and Remote Sensing, IEEE Transactions on, 1991, 29(6): 997-1003.
[10] Chang C Y, Curlander J C. Application of the multiple PRF technique to resolve Doppler centroid estimation ambiguity for spaceborne SAR [J]. Geoscience and Remote Sensing, IEEE Transactions on, 1992, 30(5): 941-949.
[11] YU Mingcheng, XU Jia, PENG Yingning. SAR PRF- ambiguity resolving by range diversity [J]. Electronics Letters, 2005, 41(22): 1246-1247.
[12] 夏斌, 许稼, 汤俊, 等. 基于多视图像序列跟踪的SAR地面运动目标检测[J]. 清华大学学报(自然科学版), 2011, 51(7):977-982.XIA Bin, XU Jia, TANG Jun, et al. Moving ground target detection based on SAR multi-look image sequence tracking [J]. J Tsinghua Univ (Sci and Tech), 2011, 51(7):977-982. (in Chinese)
[13] Wong F, Cumming I G. A combined SAR Doppler centroid estimation scheme based upon signal phase [J]. Geoscience and Remote Sensing, IEEE Transactions on, 1996, 34(3): 696-707.
[14] ZHU Shengqi, LIAO Guisheng, QU Yi, et al. Ground moving targets detection and unambiguous motion parameter estimation based on multi-channel SAR system [C]// Radar Conference, 2009 IET International. Guilin, China: IET, 2009:1-4.
[15] ZHAO Wei, ZHOU Guoqing, YUE Tao, et al. Retrieval of ocean wavelength and wave direction from SAR image based on radon transform [C]// Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International. Melbourne, VIC, Australia: IEEE Press. 2013: 1513-1516.
[16] Varma G S, Banerjee B, Muhuri A, et al. Radon transform based edge detection for SAR imagery [C]// Geoscience and Remote Sensing Symposium (IGARSS). Melbourne, VIC, Australia: IEEE Press. 2013 IEEE International. 2013: 3088-3091.
[17] XIONG Wei, ZHONG Juanjuan, ZHOU Ye. Automatic recognition of airfield runways based on Radon transform and hypothesis testing in SAR images [C]// Millimeter Waves (GSMM), 2012 5th Global Symposium on. Harbin, China: IEEE Press, 2012: 462-465.
[18] LIU Baochang, WANG Tong, BAO Zheng. Doppler ambiguity resolving in compressed azimuth time and range frequency domain [J]. Geoscience and Remote Sensing, IEEE Transactions on, 2008, 46(11): 3444-3458.
[19] Cumming I G, LI Shu. Improved slope estimation for SAR Doppler ambiguity resolution [J]. Geoscience and Remote Sensing, IEEE Transactions on, 2006, 44(3): 707-718.
[20] 左渝, 许稼, 彭应宁, 等. SAR运动目标距离Doppler域扩展混合积累检测[J]. 清华大学学报(自然科学版), 2010, 50(1):145-148.ZU Yu, XU Jia, PENG Yingning, et al. Extended hybrid integration for SAR moving target detection in range-Doppler domain [J]. J Tsinghua Univ (Sci and Tech), 2010, 50(1):145-148. (in Chinese)
[21] XU Jia, ZUO Yu, XIA Bin, et al. Ground moving target signal analysis in complex image domain for multichannel SAR [J]. Geoscience and Remote Sensing, IEEE Transactions on, 2012, 50(2):538-552.
[22] YANG Jungang, HUANG Xiaotao, JIN Tian, et al. New approach for SAR imaging of ground moving targets based on a Keystone transform [J]. Geoscience and Remote Sensing Letters, IEEE, 2013, 8(4): 829-833.
[23] LIU Yangyang, ZHOU Daiying. A novel approach for ground moving targets SAR imaging based on second order Keystone transform [J]. Computational Intelligence and Design (ISCID), 2013 Sixth International Symposium on, 2013, 2(1): 125-128.
[24] Cumming I G, Wong F. Digital Processing of Synthetic Aerture Radar Data: Algorithms and Implementation [M]. Boston, MA, USA: Artech House, 2005. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|