Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2015, Vol. 55 Issue (8) : 873-877,883     DOI:
ELECTRONIC ENGINEERING |
Character model optimization for segmentation-free Uyghur text line recognition
JIANG Zhiwei, DING Xiaoqing, PENG Liangrui
State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(1484 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  A text line recognition method was developed without pre-segmentation using a hidden Markov model (HMM) for simultaneously segmenting and recognizing text line images. The algorithm uses a probability graph to reduce recognition error from failed pre-segmentation results. However, the HMM design and training is complicated and the HMM generalization performance can not be easily improved in multi-font texts. Therefore, a character model optimization method with reasonably clustered observations was developed based on the most common HMM state in images. Then, a method was developed to optimize the model structure and parameters together for a multi-font Uyghur text line recognition system. Tests show that this method improves the state allocation, the generalization performance and the state efficiency of the character model for multi-font texts.
Keywords information processing      character recognition      hidden Markov model (HMM)      statistical learning      Uyghur     
ZTFLH:  TP391.4  
Issue Date: 15 August 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIANG Zhiwei
DING Xiaoqing
PENG Liangrui
Cite this article:   
JIANG Zhiwei,DING Xiaoqing,PENG Liangrui. Character model optimization for segmentation-free Uyghur text line recognition[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(8): 873-877,883.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2015/V55/I8/873
   
   
   
   
   
   
[1] 王华, 丁晓青, 哈力木拉提. 多字体多字号印刷维吾尔文字符识别 [J]. 清华大学学报(自然科学版), 2004, 44(7): 946-949. WANG Hua, DING Xiaoqing, Halmurat. Multi-font multi-size printed Uyghur character recognition [J]. Journal of Tsinghua University (Science and Technology), 2004, 44(7): 946-949. (in Chinese)
[2] 贾建忠. 脱机印刷体维吾尔文字识别特征选择和分类器设计方法的研究 [D]. 苏州: 苏州大学, 2008.JIA Jianzhong. The Research of feature selection and classifier design for Printed Offline Uygur character recognition [D]. Suzhou: Soochow University, 2008. (in Chinese)
[3] 陈卿. 印刷体维吾尔文识别系统分类识别技术研究 [D]. 新疆: 新疆大学, 2012.CHEN Qing. Classification and Recognition Technology Research in Print Uighur Recognition System [D]. Xinjiang: Xinjiang University, 2012. (in Chinese)
[4] 陆钢锋. 印刷体维吾尔文识别系统识别技术相关研究 [D]. 新疆: 新疆大学, 2013.LU Gangfeng. Recognition Technology Correlational Research in Print Uighur Recognition System [D]. Xinjiang: Xinjiang University, 2013. (in Chinese)
[5] 阿地力·依米提, 刘吉超, 杜力坤·苏来曼. 复杂背景图像中维吾尔文字切分与识别技术的研究 [J]. 新疆师范大学学报(自然科学版), 2014, 33(1): 65-68.Adili Y, LIU Jichao, Dulikum S. Study on Character Segementation and Recognition Technology of Uyghur in Image with complex Background [J]. Journal of Xinjiang Normal University (Natural Sciences Edition), 2014, 33(1): 65-68. (in Chinese)
[6] Zimmermann M, Bunke H. Hidden Markov model length optimization for handwriting recognition systems [C]// Proc of International Workshop on Frontiers in Handwriting Recognition. Niagara on the Lake, Canada: IEEE Press, 2002, 369-374.
[7] Gunter S, Bunke H. Optimizing the Number of States, Training Iterations and Gaussians in an HMM-based Handwritten Word Recognizer [C]// Proc 7th Int Conf on Document Analysis and Recognition. Edinburgh, Scotland, UK: IEEE Press, 2003, 472-476.
[8] JIANG Zhiwei, DING Xiaoqing, PENG Liangrui, et al. Analyzing the information entropy of states to optimize the number of states in an HMM-based off-line handwritten Arabic word recognizer [C]// Proc 21st Int Conf on Pattern Recognition. Tsukuba, Japan: IEEE Press, 2012, 697-700.
[9]Kullback S, Leibler R A. On information and sufficiency [J]. The Annals of Mathematical Statistics, 1951, 22(1): 79-86.
[10]王欢良, 韩纪庆, 郑铁然. 高斯混合分布之间K-L散度的近似计算 [J]. 自动化学报, 2008, 34(5): 529-534.WANG Huanliang, HAN Jiqing, ZHENG Tieran. Approximation of Kullback-Leibler Divergence between Two Gaussian Mixture Distributions [J]. Acta Automatica Sinica, 2008, 34(5): 529-534. (in Chinese)
[11]Bicego M, Murino V, Figueiredo M A T. A sequential pruning strategy for the selection of the number of states in hidden Markov models [J]. Pattern Recognition Letters, 2003, 24(9): 1395-1407.
[12]Fink G A. Markov Models for Pattern Recognition: From Theory to Applications [M]. New York: Springer, 2008.
[13]Clemente I A, Heckmann M, Sagerer M, et al. Multiple sequence alignment based bootstrapping for improved incremental word learning [C]// Proc 35th Int Conf on Acoustics, Speech, and Signal Processing. Dallas, TX, USA: IEEE Press, 2010, 5246-5249.
[14]Young S, Evermann G, Gales M, et al. The HTK Book (for HTK Version 3.4) [M]. Cambridge, UK: Cambridge University, 2009.
[15]Al-Hajj R M. Combining slanted-frame classifiers for improved HMM-based Arabic handwriting recognition [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2009, 31(7): 1165-1177.
[16]Mahmouda S A, Ahmada I, Al-Khatiba W G, et al. KHATT: An open Arabic offline handwritten text database [J]. Pattern Recognition, 2014, 47(3): 1096-1112.
[1] YU Jiayin, HE Yulin, CUI Laizhong, HUANG Zhexue. Distribution consistency-based missing value imputation algorithm for large-scale data sets[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(5): 740-753.
[2] WANG Xiaoxu, WANG Lizhen, WANG Jialong. Mining spatio-temporal co-location fuzzy congestion patterns from traffic datasets[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(8): 683-692.
[3] GAO Zhiqiang, CUI Xiaolong, DU Bo, ZHOU Sha, YUAN Chen, LI Ai. Collection scheme of location data based on local differential privacy[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(1): 23-27.
[4] NURMEMET Yolwas, LIU Junhua, WUSHOUR Silamu, REYIMAN Tursun, DAWEL Abilhayer. Crosslingual acoustic modeling in Uyghur speech recognition[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(4): 342-346.
[5] ZHANG Jing, HUANG Degen, HUANG Kaiyu, LIU Zhuang, MENG Xiangzhu. λ-active learning based microblog-oriented Chinese word segmentation[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(3): 260-265.
[6] Halidanmu Abudukelimu, LIU Yang, SUN Maosong. Performance comparison of neural machinetranslation systems in Uyghur-Chinese translation[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(8): 878-883.
[7] DING Ying, FAN Jingtao, QUAN Wei, HAN Cheng. Nonlinear compensation for optical vignetting in vision systems[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(7): 702-706.
[8] ABULIZI Abudukelimu, JIANG Minghu, YAO Dengfeng, ABUDUKELIMU Halidanmu. Neurocognitive mechanism for morphological complex word processing[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(4): 393-398.
[9] Mijit Ablimit, Akbar Pattar, Askar Hamdulla. Multilayer structure based lexicon optimization for language modeling[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(3): 257-263.
[10] IMAM Seyyare, PARHAT Rayilam, HAMDULLA Askar, LI Zhijun. Keyword extraction algorithms for emotion recognition from Uyghur text[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(3): 270-273.
[11] Aisikaer Rouzi, YIN Shi, ZHANG Zhiyong, WANG Dong, Askar Hamdulla, ZHENG Fang. THUYG-20: A free Uyghur speech database[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(2): 182-187.
[12] Abdurahim Mahmoud, Hussein Yusuf, ZHANG Jiajun, ZONG Chengqing, Askar Hamdulla. Name recognition in the Uyghur language based on fuzzy matching and syllable-character conversion[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(2): 188-196.
[13] Abdusalam Dawut, Hussein Yusuf, Askar Hamdulla. Emotion recognition from Uyghur sentences based on combinations of class discrimination words and a sentiment dictionary[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(2): 197-201.
[14] Hankiz Yilahun, Gulmire Imam, Maynur Ablitip, Guljamal Mamateli, Askar Hamdulla. Undulating scale of intonations of exclamatory Uyghur sentences[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(12): 1254-1258.
[15] Gulmire Imam, Guljamal Mamateli, Maynur Ablitip, Askar Hamdulla. Prosody modeling for Uyghur TTS[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(12): 1259-1264.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd