Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2022, Vol. 62 Issue (9) : 1450-1457     DOI: 10.16511/j.cnki.qhdxxb.2022.22.028
PROCESS SYSTEMS ENGINEERING |
Comparison and integration of machine learning based ethylene cracking process models
ZHAO Qiming1,2, BI Kexin1,2,3, QIU Tong1,2
1. Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;
2. Beijing Key Laboratory of Industrial Big Data System and Application, Beijing 100084, China;
3. School of Chemical Engineering, Sichuan University, Chengdu 610065, China
Download: PDF(4808 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Ethylene is an essential petrochemical industry product produced in a complex steam cracking process. Fast, accurate predictions of ethylene cracking depths depend on accurate naphtha cracking models. This paper compares three machine learning models based on a support vector regression (SVR), a k-nearest neighbor regression, and an extreme gradient boosting (XGBoost) to predict the ethylene cracking depth. Several industrial datasets are screened to identify the critical variables controlling the process using the density-based spatial clustering of applications with noise (DBSCAN) and a local abnormal factor detection algorithm. These three models are then trained and combined into an ensemble model to provide better predictions. The ensemble model combines the advantages of the three models and reduces the overfitting, the sensitivity to noise and other shortcomings. The ensemble model then has better prediction stability and generalization ability. The ensemble model predictions have R2=0.955 and an average absolute percentage error of about 0.23%, which is sufficient for process research and industrial applications.
Keywords machine learning      support vector regression      k-nearest neighbor regression      extreme gradient boosting (XGBoost)      ensemble learning      ethylene cracking     
Issue Date: 18 August 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Qiming
BI Kexin
QIU Tong
Cite this article:   
ZHAO Qiming,BI Kexin,QIU Tong. Comparison and integration of machine learning based ethylene cracking process models[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1450-1457.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2022.22.028     OR     http://jst.tsinghuajournals.com/EN/Y2022/V62/I9/1450
  
  
  
  
  
  
  
  
[1] 胡杰, 王松汉, 中国石油天然气股份有限公司石油化工研究院. 乙烯工艺与原料[M]. 北京: 化学工业出版社, 2018. HU J, WANG S H, CNPC Research Institute of Petrochemical Technology. Ethylene production process and raw materials[M]. Beijing: Chemical Industry Press, 2018. (in Chinese)
[2] PLEHIERS P P, SYMOENS S H, AMGHIZAR I, et al. Artificial intelligence in steam cracking modeling: A deep learning algorithm for detailed effluent prediction[J]. Engineering, 2019, 5(6): 1027-1040.
[3] 李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012. LI H. Statistical learning methods[M]. Beijing: Tsinghua University Press, 2012. (in Chinese)
[4] 朱哲熹. 基于支持向量机的石脑油裂解制乙烯过程软测量建模研究[D]. 北京: 北京化工大学, 2019. ZHU Z X. Research on soft sensor modelling method using support vector regression (SVR) in naphtha cracking processes[D]. Beijing: Beijing University of Chemical Technology, 2019. (in Chinese)
[5] MAHDIANI M R, KHAMEHCHI E, HAJIREZAIE S, et al. Modeling viscosity of crude oil using k-nearest neighbor algorithm[J]. Advances in Geo-Energy Research, 2020, 4(4): 435-447.
[6] SERFIDAN A C, TVRKAY M. Explanatory and predictive analysis of naphtha splitter products[J]. Computer Aided Chemical Engineering, 2021, 50: 1-6.
[7] GÓMEZ-RÍOS A, LUENGO J, HERRERA F. A study on the noise label influence in boosting algorithms: AdaBoost, GBM and XGBoost[C]//12th International Conference on Hybrid Artificial Intelligent Systems. La Rioja, Spain, 2017: 268-280.
[8] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: Identifying density-based local outliers[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. Dallas, USA, 2000: 93-104.
[9] PENG H C, LONG F H, DING C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238.
[10] 陈贵华, 王昕, 王振雷, 等. 基于模糊核聚类的乙烯裂解深度DE-LSSVM多模型建模[J]. 化工学报, 2012, 63(6): 1790-1796. CHEN G H, WANG X, WANG Z L, et al. Multiple DE-LSSVM modeling of ethylene cracking severity based on fuzzy kernel clustering[J]. CIESC Journal, 2012, 63(6):1790-1796. (in Chinese)
[11] MOGHADASI M, OZGOLI H A, FARHANI F. A machine learning-based operational control framework for reducing energy consumption of an amine-based gas sweetening process[J]. International Journal of Energy Research, 2021, 45(1): 1055-1068.
[12] SCHUBERT E, SANDER J, ESTER M, et al. DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN[J]. ACM Transactions on Database Systems, 2017, 42(3): 19.
[13] RAHMAH N, SITANGGANG I S. Determination of optimal epsilon (Eps) value on DBSCAN algorithm to clustering data on peatland hotspots in Sumatra[J]. IOP Conference Series: Earth and Environmental Science, 2016, 31(1): 012012.
[14] LAMESKI P, ZDRAVEVSKI E, MINGOV R, et al. SVM parameter tuning with grid search and its impact on reduction of model over-fitting[M]//YAO Y J, HU Q H, YU H, et al. Rough sets, fuzzy sets, data mining, and granular computing. Cham, Switzerland: Springer, 2015: 464-474.
[15] CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2016: 785-794.
[16] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. ZHOU Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016. (in Chinese)
[17] PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: Machine learning in Python[J]. The Journal of Machine Learning Research, 2011, 12: 2825-2830.
[18] ARLOT S, CELISSE A. A survey of cross-validation procedures for model selection[J]. Statistics Surveys, 2010, 4: 40-79.
[1] WU Hao, NIU Fenglei. Machine learning model of radiation heat transfer in the high-temperature nuclear pebble bed[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1213-1218.
[2] DAI Xin, HUANG Hong, JI Xinyu, WANG Wei. Spatiotemporal rapid prediction model of urban rainstorm waterlogging based on machine learning[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 865-873.
[3] REN Jianqiang, CUI Yapeng, NI Shunjiang. Prediction method of the pandemic trend of COVID-19 based on machine learning[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 1003-1011.
[4] AN Jian, CHEN Yuxuan, SU Xingyu, ZHOU Hua, REN Zhuyin. Applications and prospects of machine learning in turbulent combustion and engines[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 462-472.
[5] PING Guolou, ZENG Tingyu, YE Xiaojun. Unsupervised network traffic anomaly detection based on score iterations[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 819-824.
[6] CAO Laicheng, LI Yuntao, WU Rong, GUO Xian, FENG Tao. Multi-key privacy protection decision tree evaluation scheme[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 862-870.
[7] WANG Haojie, MA Zixuan, ZHENG Liyan, WANG Yuanwei, WANG Fei, ZHAI Jidong. Efficient memory allocator for the New Generation Sunway supercomputer[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 943-951.
[8] LU Sicong, LI Chunwen. Human-machine conversation system for chatting based on scene and topic[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 952-958.
[9] LI Wei, LI Chenglong, YANG Jiahai. As-Stream: An intelligent operator parallelization strategy for fluctuating data streams[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1851-1863.
[10] LIU Qiangmo, HE Xu, ZHOU Baishun, WU Haolin, ZHANG Chi, QIN Yu, SHEN Xiaomei, GAO Xiaorong. Simple and high performance classification model for autism based on machine learning and pupillary response[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1730-1738.
[11] MA Xiaoyue, MENG Xiao. Image position and layout effects of multi-image tweets from the perspective of user engagement[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 77-87.
[12] TANG Zhili, WANG Xue, XU Qianjun. Rockburst prediction based on oversampling and objective weighting method[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(6): 543-555.
[13] WANG Zhiguo, ZHANG Yujin. Anomaly detection in surveillance videos: A survey[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(6): 518-529.
[14] SONG Yubo, QI Xinyu, HUANG Qiang, HU Aiqun, YANG Junjie. Two-stage multi-classification algorithm for Internet of Things equipment identification[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(5): 365-370.
[15] SONG Yubo, YANG Huiwen, WU Wei, HU Aiqun, GAO Shang. Joint DDoS detection system based on software-defined networking[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(1): 28-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd