Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2015, Vol. 55 Issue (9) : 1023-1035     DOI:
ENVIRONMENTAL SCIENCE AND ENGINEERING |
Technical-economic analyses and prediction of liquid biofuels in China
ZHAO Lili1,2, CHANG Shiyan1,2,3, XU Jie4, ZHANG Xiliang1,2
1. Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China;
2. China Automotive Energy Research Center, Tsinghua University, Beijing 100084, China;
3. Laboratory of Low Carbon Energy, Tsinghua University, Beijing 100084, China;
4. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
Download: PDF(2162 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  A plant-gate price (PGP) estimation model was used in technical-economic analyses of 17 liquid biofuel production processes. The net present value (NPV) method was used to determine the PGPs of biofuels with a finite internal rate of return based on the costs for total investment, feedstock, operation, taxes, fees, and loans. The results will help policy makers formulate incentive policies for research and development (R&D) of liquid biofuels in China. The results indicate that the PGPs of 1.5th generation biofuel products are highly sensitive to feedstock cost (54%-90%). Bioethanol based on non-grain starches and sugars, and biofuels based on jatropha will be competitive with fossil fuels by 2020-2025. Most of 2nd generation biofuel PGPs will drop during 2020-2030 and will be competitive with fossil fuels around 2025. The feedstock cost, 13%-40%, and operating expenses, 21%-48%, contribute almost equally to the PGPs. In the mid-and long-terms, the priorities should be to develop 2nd generation fuels. The PGP of 3rd generation biofuels are the most sensitive to the feedstock cost (64%-96%) and will not be able to compete with fossil fuels until 2040-2045. Tax preferences will be critical to accelerating the growth of biofuels. Most biofuels will be competitive with fossil fuels 10-15 years earlier if the value-added tax (VAT), consumption tax and income tax are exempted. They will be competitive with fossil fuels even earlier as if a carbon tax is imposed on fossil fuels. However, the effect of the carbon tax will not be significant in the near-and mid-terms. This research suggests that the government develops a long-term plan and take action towards the sound development of biofuels by promoting feedstock breeding, helping establish a cost-effective feedstock collection, storage and transportation system, and support R&D and demonstration projects of biofuel conversion technologies. Policies including tax preference and carbon tax are also suggested to accelerate the biofuel development.
Keywords industrial technical-economic analyses      liquid biofuels      plant-gate price (PGP)      prediction      policy      tax preference      carbon tax     
ZTFLH:  F424.6  
Issue Date: 15 September 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Lili
CHANG Shiyan
XU Jie
ZHANG Xiliang
Cite this article:   
ZHAO Lili,CHANG Shiyan,XU Jie, et al. Technical-economic analyses and prediction of liquid biofuels in China[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(9): 1023-1035.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2015/V55/I9/1023
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 中国石油集团经济技术研究院. 2014年国内外油气行业发展报告 [R]. 北京: 中国石油集团经济技术研究院, 2015.China National Petroleum Corporation Economics & Technology Research Institute. Domestic and International Oil and Gas Industry Development Report [R]. Beijing: China National Petroleum Corporation Economics & Technology Research Institute, 2015. (in Chinese)
[2] 中国能源中长期发展战略研究项目组. 中国能源中长期(2030、2050)发展战略研究: 电力、油气、核能、环境卷 [M]. 北京: 科学出版社, 2011.Research Group for China Medium-and Long-Term Energy Development Strategy. Development Strategy of China's Energy and Long-Term (2030, 2050): Power · Oil and Gas · Nuclear Energy · Environment Volume [M]. Beijing: Science Press, 2011. (in Chinese)
[3] 童晓光, 赵林, 汪如朗. 对中国石油对外依存度问题的思考 [J]. 经济与管理研究, 2009(1): 60-65.TONG Xiaoguang, ZHAO Lin, WANG Rulang. Several thoughts on overseas oil dependence ratio in China [J]. Research on Economics and Management, 2009(1): 60-65. (in Chinese)
[4] MA Linwei, FU Feng, LI Zheng, et al. Oil development in China: Current status and future trends [J]. Energy Policy, 2012, 45: 43-53.
[5] CHANG Shiyan, ZHAO Lili, Timilsina G R, et al. Biofuels development in China: Technology options and policies needed to meet the 2020 target [J]. Energy Policy, 2012, 51: 64-79.
[6] 杨新亭. TG公司木薯燃料乙醇项目可行性研究 [D]. 南京: 南京理工大学, 2012.YANG Xinting. Feasibility Study on the Cassava-Based Fuel Ethanol Project of Tgcompany [D]. Nanjing: Nanjing University of Science & Technology, 2012. (in Chinese)
[7] 宋安东, 任天宝, 张百良. 玉米秸秆生产燃料乙醇的经济性分析 [J]. 农业工程学报, 2010, 26(6): 283-286.SONG Andong, REN Tianbao, ZHANG Bailiang. Economic analysis for production of fuel ethanol with corn straw [J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(6): 283-286. (in Chinese)
[8] 郑世杰. 维素燃料乙醇技术经济分析 [D]. 北京: 北京化工大学, 2011.ZHENG Shijie. Techno-Economic Analysis of Cellulosic Ethanol Fuel [D]. Beijing: Beijing Univeristy of Chemical Technology, 2011. (in Chinese)
[9] 姜芹, 孙亚琴, 滕虎, 等. 纤维素燃料乙醇技术经济分析 [J]. 过程工程学报, 2012, 12(1): 97-104.JIANG Qin, SUN Yaqin, TENG Hu, et al. Techno-economic analysis of cellulosic ethanol [J]. The Chinese Journal of Process Engineering, 2012, 12(1): 97-104. (in Chinese)
[10] 方芳, 于随然, 王成焘. 中国玉米燃料乙醇项目经济性评估 [J]. 农业工程学报, 2004, 20(3): 239-242.FANG Fang, YU Suiran, WANG Chengtao. Economic assessment on corn-based fuel ethanol projects in China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(3): 239-242. (in Chinese)
[11] 梅晓岩, 刘荣厚, 曹卫星. 甜高粱茎秆固态发酵制取燃料乙醇中试项目经济评价 [J]. 农业工程学报, 2011, 27(10): 243-248.MEI Xiaoyan, LIU Ronghou, CAO Weixing. Techno- economic assessment on pilot-scale plant for fuel ethanol production from sweet sorghum stem by solid state fermentation [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(10): 243-248. (in Chinese)
[12] 傅朝霞. 年产10万吨燃料乙醇项目创业方案 [D]. 成都: 四川大学, 2007.FU Zhaoxia. Project for the Projeet on 0.1 Million Ton Annual Output of Ethanol [D]. Chengdu: Sichuan Unviersity, 2007. (in Chinese)
[13] 李丽萍. 生物柴油生产工艺的技术经济分析及综合评价模型 [D]. 天津: 天津大学, 2011.LI Liping. Techno-Economic Analysis and Comprehensive Evaluation Model on Biodiesel Production Process [D]. Tianjin: Tianjin University, 2011. (in Chinese)
[14] 曾宏, 李洪明, 方柏山. 生物柴油超临界甲醇法生产工艺全流程模拟与经济分析 [J]. 过程工程学报, 2010, 10(6): 1168-1174.ZENG Hong, LI Hongming, FANG Baishan. Process simulation and economic analysis on supercritical methanol production technology of biodiesel [J]. The Chinese Journal of Process Engineering, 2010, 10(6): 1168-1174. (in Chinese)
[15] 曾麟, 王革华. 中国甘蔗燃料乙醇生产的技术、经济和环境可行性分析 [J]. 可再生能源, 2006(4): 46-49.ZENG Lin, WANG Gehua. Technical, economic and environmental analysis of fuel ethanol production from sugarcane in China [J]. Renewable Energy, 2006(4): 46-49. (in Chinese)
[16] Littlewood J, WANG Lei, Turnbull C, et al. Techno- economic potential of bioethanol from bamboo in China [J]. Biotechnology for Biofuels, 2013, 6(1): 173.
[17] YU Suiran, TAO Jing. Economic, energy and environmental evaluations of biomass-based fuel ethanol projects based on life cycle assessment and simulation [J]. Applied Energy, 2009, 86(11): S178-S188.
[18] 袁振宏, 许洁. 中国生物液体燃料技术经济分析报告 [R]. 北京: 中科院广州能源研究所, 2014.YUAN Zhenhong, XU Jie. Analysis of Technology Development of China Biofuels [R]. Beijing: Guangzhou Institute of Energy Conversion; 2014. (in Chinese)
[19] 田宜水. 可作为生物质液体燃料原料的中国生物质资源潜力分析[R]. 北京: 农业部规划设计研究院, 2014.TIAN Yishui. A Potential Analysis Report of China Biomass Resources that Can Be Used as Raw Materials of Biomass Liquid Fuels [R]. Beijing: Chinese Academy of Agricultural Engineering, 2014. (in Chinese)
[20] 清华大学能源环境经济研究所, 中科院广州能源研究所, 农业部能源环保技术开发中心. 中国生物液体燃料发展路线图研究 [R]. 北京: 国家发展和改革委员会能源研究所, 2014.Institute of Energy, Environment & Economy of Tsinghua University, Guangzhou Institute of Energy Conversion, Chinese Academy of Agricultural Engineering. China Liquid Biofuel Development Roadmap [R]. Beijing: Energy Research Institute (ERI) of the National Development and Reform Commission (NDRC), 2014
[21] 殷强, 冯瑞菊. 中国税制 [M]. 北京: 清华大学出版社, 2011. YIN Qiang, FENG Ruiju. Tax System of China [M]. Beijing: Tsinghua University Press, 2011. (in Chinese)
[22] 清华大学中国车用能源研究中心. 中国车用能源展望2012 [M]. 北京: 科学出版社, 2012.China Automotive Energy Research Center of Tsinghua University. China Automotive Energy Outlook 2012 [M]. Beijing: Science Press, 2012. (in Chinese)
[23] Humbird D, Davis R, TAO Ling, et al. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover [R]. Golden, USA: National Renewable Energy Laboratory, 2011.
[24] 李希宏, 毛加样, 周若洪, 等. 中国石油化工项目可行性研究技术经济参数与数据2011 [R]. 北京: 中国石油化工集团公司经济技术研究院, 2011.LI Xihong, MAO Jiaxiang, ZHOU Ruohong, et al. Parameter & Data 2011-Sinopec Project Feasibility Study Technical Economy [R]. Beijing: SINOPEC Economic Research Institute, 2011. (in Chinese)
[25] US Energy Information Administration (EIA). International Energy Outlook 2013 [M]. Washington DC, USA: Energy Information Administration, 2013.
[26] US Energy Information Administration (EIA). International Energy Outlook 2014 [M]. Washington DC, USA: Energy Information Administration, 2014.
[27] 张希良, 常世彦, 欧训民, 等. 中国生物质液体燃料应用市场分析报告 [R]. 北京: 清华大学能源环境经济研究所, 2014.ZHANG Xiliang, CHANG Shiyan, OU Xunmin, et al. Analysis Report on Biofuel Application Market in China [R]. Beijing: Institute of Energy, Environment & Economy of Tsinghua University, 2014. (in Chinese)
[1] ZHAO Zeheng, ZHAO Jinsong. Remaining useful life prediction of fan belts based on destructive experiments and autoencoders[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1458-1466.
[2] HUANG Yonghao, YANG Xinmiao, YUE Jintao. Urban street bicycle flow analysis based on multi-scale geographically weighted regression model[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(7): 1132-1141.
[3] CHEN Chuangang, HU Jinqiu, HAN Zicong, CHEN Yiyue, XIAO Shangrui. Knowledge graph based early warning method for accident evolution in natural gas pipeline station abroad for harsh environmental conditions[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(6): 1081-1087.
[4] LEI Zheng, JIANG Peng, WANG Qiming. Prognostics health management system for FAST actuators[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(11): 1796-1802.
[5] YU Hongwei, ZHOU Dongbo, XU Wenhui, YU Yaying, WANG Xiaomei, TU Yue. Daily behavior prediction of college students on campus based on multifragment semantic spatiotemporal graph convolutional network[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 105-115.
[6] LI Rui, LI Chunming, SU Jie, CHEN Liang, QIN Zhaobo, BIAN Yougang. Slid parameter estimates for tracked vehicles with trajectory prediction compensation[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 133-140.
[7] YU Yong, WANG Yinggang, LUO Zhengguo, YANG Yan, WANG Xinkai, GAO Tao, YU Qian. Link prediction algorithm based on clustering coefficient and node centrality[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 98-104.
[8] WANG Tinghan, LUO Yugong, LIU Jinxin, LI Keqiang. End-to-end self-driving policy based on the deep deterministic policy gradient algorithm considering the state distribution[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(9): 881-888.
[9] WANG Liping, WANG Ding, YU Guang, GUO Hongwei, LI Weitao. Milling forces during five-axis flank milling[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(9): 972-978.
[10] CHEN Anying, ZHU Haoran, SU Guofeng. Emergency warning information repost behavior of Weibo users[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(6): 527-535.
[11] TANG Zhili, WANG Xue, XU Qianjun. Rockburst prediction based on oversampling and objective weighting method[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(6): 543-555.
[12] Xiaoying WANG,Zijie FAN,Jiang BIAN,Liangjin GUI. Drum brake fatigue life predictions[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(1): 21-27.
[13] LIU Zonglin, ZHANG Meishan, ZHEN Ranran, GONG Zuoquan, YU Nan, FU Guohong. Multi-task learning model for legal judgment predictions with charge keywords[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(7): 497-504.
[14] WANG Wenguan, CHEN Yunwen, CAI Hua, ZENG Yanneng, YANG Huiyu. Judicial document intellectual processing using hybrid deep neural networks[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(7): 505-511.
[15] LÜ Zheng, SONG Jiali, SUN Zhi, CAO Hongbin. Intellectual property analysis of lithium-ion battery recycling methods in China[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(7): 551-557.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd