Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (3) : 286-292     DOI: 10.16511/j.cnki.qhdxxb.2017.26.011
PHYSICS AND ENGINEERING PHYSICS |
Speech enhancement algorithm that combines EEMD and K-SVD dictionary training
GAN Zhenye, CHEN Hao, YANG Hongwu
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
Download: PDF(1774 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  This paper presents a speech enhancement algorithm that combines the ensemble empirical mode decomposition (EEMD) algorithm and the K-singular value decomposition (K-SVD) dictionary-training algorithm. The EEMD algorithm is used to obtain the intrinsic mode function (IMF) components from noisy speech. The cross-correlations and autocorrelations of each IMF are calculated from the IMF components to filter out the noisy IMF components. The transition IMF components are again decomposed with EEMD to further remove the noisy component. The remained IMFs and transition IMFs are superimposed to generate the de-noised speech. An over-complete dictionary is then trained from the clean speech by the K-SVD dictionary training algorithm. The de-noised speech is then sparse decomposed with the over-complete dictionary to obtain the enhanced speech by recovering the speech signal from sparse coefficient vectors. Tests show that the algorithm achieves better de-noising than the traditional spectral subtraction, wavelet threshold de-noising and K-SVD dictionary-training algorithms for both low signal-to-noise ratio (SNR) and high SNR environments.
Keywords speech enhancement      ensemble empirical mode decomposition (EEMD)      K-singular value decomposition (K-SVD)      correlation     
ZTFLH:  TN912.35  
Issue Date: 15 March 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAN Zhenye
CHEN Hao
YANG Hongwu
Cite this article:   
GAN Zhenye,CHEN Hao,YANG Hongwu. Speech enhancement algorithm that combines EEMD and K-SVD dictionary training[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(3): 286-292.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.26.011     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I3/286
  
  
  
  
  
  
  
  
  
  
[1] Chen J, Benesty J, Huang Y, et al. New insights into the noise reduction Wiener filter[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2006, 14(4):1218-1234.
[2] Boll S. Suppression of acoustic noise in speech using spectral subtraction[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1979, 27(2):113-120.
[3] Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3):613-627.
[4] 王文波, 张晓东, 汪祥莉. 基于主成分分析的经验模态分解消噪方法[J]. 电子学报, 2013, 41(7):1425-1430. WANG Wenbo, ZHANG Xiaodong, WANG Xiangli. Empirical mode decomposition de-noising method based on principal component analysis[J]. Chinese Journal of Electronics, 2013, 41(7):1425-1430. (in Chinese)
[5] 石光明, 刘丹华, 高大化, 等. 压缩感知理论及其研究进展[J]. 电子学报, 2009, 37(5):1070-1081.SHI Guangming, LIU Danhua, GAO Dahua, et al. Advances in theory and application of compressed sensing[J]. Chinese Journal of Electronics, 2009, 37(5):1070-1081. (in Chinese)
[6] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[7] Michal A, Michael E, Alfred B. <em>K</em>-SVD:An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4311-4322.
[8] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences. London, UK:Royal Society, 1998:903-995.
[9] Wu Z, Huang N E. Ensemble empirical mode decomposition:A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1):1-41.
[10] Karahanoglu N B, Erdogan H. A<sup>*</sup> Orthogonal matching pursuit:Best-first search for compressed sensing signal recovery[J]. Digital Signal Processing, 2012, 22(4):555-568.
[11] Engan K, Aase S O, Husøy J H. Multi-frame compression:Theory and design[J]. Signal Processing, 2000, 80(10):2121-2140.
[12] 李月, 彭蛟龙, 马海涛, 等. 过渡内蕴模态函数对经验模态分解去噪结果的影响研究及改进算法[J]. 地球物理学报, 2013, 56(2):626-634. LI Yue, PENG Jiaolong, MA Haitao, et al. Study of the influence of transition IMF on EMD do-noising and improved algorithm[J]. Chinese Journal of Geophysics, 2013, 56(2):626-634. (in Chinese)
[13] Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 52(1):6-18.
[14] Li Z, Tan E C, McLoughlin I, et al. Proposal of standards for intelligibility tests of Chinese speech[J]. IEEE Proceedings-Vision, Image and Signal Processing, 2000, 147(3):254-260.
[1] LIU Peng, QIAO Xinzhou. Stability sensitivity of a completely restrained 3-DOF cable-driven parallel robot with four long-span cables[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1548-1558.
[2] WANG Xingwang, LIU Yaoru, LÜ Shuai, YANG Qiang. Relationship between reservoir bank deformation and reservoir-induced earthquakes during the impounding of high arch dams[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(8): 1341-1350.
[3] SONG Jing, SUN Guang'ai. Analysis of colloidal system structures using spin-echo small-angle neutron scattering[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 627-632.
[4] CHEN Daoxiang, LIN Peng, DING Peng, LI Guo, CHEN Tao, YU Zhuojing. Vibro-stone column filling schemes based on Group AHP[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1915-1921.
[5] GU Junping, LIU Qi, WU Yuxin, WANG Qinggong, LYU Junfu. Heat transfer correlation for subcooled flow boiling of saline solutions[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(12): 1397-1404.
[6] TANG Guoli, WU Yuxin, GU Junping, LIU Qing, L�Junfu. Comparison of two-phase empirical multiplier correlations for high pressure steam-water mixtures flowing upward in a vertical smooth tube[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(6): 500-506.
[7] DUAN Qiyuan, GONG Wenran, GUO Baoqiao, WU Lifu, YU Xingzhe, XIE Huimin. Techniques of speckle fabrication and imgae processing for high temperature digital image correlation[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(6): 425-431.
[8] ZHOU Haipeng, HAN Zandong, DU Dong, CHEN Yifang. Ultrasonic signal extraction algorithm based on a Gaussian modulated pulse model[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(2): 96-102.
[9] SHI Ruijie, TANG Lihua, GAO Guangdong, YANG Dawen, XU Xiangyu. Analysis on the relationship between fish diversity and watershed features in the Yangtze River Basin[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(7): 650-657.
[10] ZHANG Wanxin, ZHU Jihong. Unsteady aerodynamic identification of aircraft at high angles of attack[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(7): 673-679.
[11] WANG Jianrong, ZHANG Ju, LU Wenhuan, WEI Jianguo, DANG Jianwu. Automatic speech recognition with robot noise[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(2): 153-157.
[12] WANG Jing, WANG Yanmin, FENG Wei, XIAO Limin, ZHOU Shidong. Energy efficient coordinated transmission scheme for multi-cell distributed antenna systems[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(1): 67-71.
[13] CHEN Xiao, XU Bo. Improved pitch extraction algorithm for speech processing[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(1): 95-99.
[14] CAO Honglin, KONG Jiangping. Correlations between vocal tract parameters and body heights in adult humans[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(11): 1184-1189,1195.
[15] GUO Yongde, GAO Jinhuan, MA Hongbing. Spatial correlation analysis of Suomi-NPP nighttime light data and GDP data[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(10): 1122-1130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd