Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2018, Vol. 58 Issue (10) : 934-940     DOI: 10.16511/j.cnki.qhdxxb.2018.21.023
NUCLEAR ENERGY AND NEW ENERGY |
Numerical simulation study of the effects of horizontal porous baffles on liquid sloshing in a cylindrical tank
ZHANG Zhanbo, LI Shengqiang
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
Download: PDF(1481 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Liquid sloshing is a common phenomenon that can cause instabilities in aircraft, can damage the tanks, and can complicate liquid level monitoring. Therefore, sloshing suppression has been extensively studied. The most common method is to arrange baffles in the tanks. The porous media model based on Darcy's law provides a simple method for simulating flows in tanks with porous baffles. In this study, experimental data was used to verify the reliability of numerical simulations used to investigate the influence of various immersion depths of horizontal porous baffles on liquid sloshing for low-frequency, large-amplitude sloshing conditions. The results show that the sloshing crests and troughs change more with higher sloshing crests because of the baffles in some cases. The baffles disturb the liquid surface which make the liquid surface oscillate more than without baffles. Thus, the baffles increasing the liquid sloshing in some cases.
Keywords horizontal porous baffle      baffle submergence depth      low-frequency, large-amplitude sloshing      numerical simulation     
Issue Date: 17 October 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Zhanbo
LI Shengqiang
Cite this article:   
ZHANG Zhanbo,LI Shengqiang. Numerical simulation study of the effects of horizontal porous baffles on liquid sloshing in a cylindrical tank[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(10): 934-940.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2018.21.023     OR     http://jst.tsinghuajournals.com/EN/Y2018/V58/I10/934
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] MOLIN B, REMY F, ARNAUD G, et al. On the dispersion equation for linear waves traveling through or over dense arrays of vertical cylinders[J]. Applied Ocean Research, 2016, 61:148-155.
[2] IRANMANESH A, PASSANDIDEH-FARD M. A 2D numerical study on suppressing liquid sloshing using a submerged cylinder[J]. Ocean Engineering, 2017, 138:55-72.
[3] STRAND I M, FALTINSEN O M. Linear sloshing in a 2D rectangular tank with a flexible sidewall[J]. Journal of Fluids & Structures, 2017, 73:70-81.
[4] TURNER M R. Liquid sloshing in a horizontally forced vessel with bottom topography[J]. Journal of Fluids & Structures, 2016, 64:1-26.
[5] LUO M, KOH C G, BAI W. A three-dimensional particle method for violent sloshing under regular and irregular excitations[J]. Ocean Engineering, 2016, 120:52-63.
[6] CHO I H, KIM M H. Effect of dual vertical porous baffles on sloshing reduction in a swaying rectangular tank[J]. Ocean Engineering, 2016, 126:364-373.
[7] CHO I H, CHOI J S, Kim M H. Sloshing reduction in a swaying rectangular tank by an horizontal porous baffle[J]. Ocean Engineering, 2017, 138:23-34.
[8] FALTINSEN O M, TIMOKHA A N. Natural sloshing frequencies and modes in a rectangular tank with a slat-type screen[J]. Journal of Sound & Vibration, 2011, 330(7):1490-1503.
[9] FALTINSEN O M, FIROOZKOOHI R, TIMOKHA A N. Steady-state liquid sloshing in a rectangular tank with a slat-type screen in the middle:Quasilinear modal analysis and experiments[J]. Physics of Fluids, 2011, 23(4):1058.
[10] FALTINSEN O M, FIROOZKOOHI R, TIMOKHA A N. Analytical modeling of liquid sloshing in a two-dimensional rectangular tank with a slat screen[J]. Journal of Engineering Mathematics, 2011, 70(1-3):93-109.
[11] FALTINSEN O M, FIROOZKOOHI R, TIMOKHA A N. Effect of central slotted screen with a high solidity ratio on the secondary resonance phenomenon for liquid sloshing in a rectangular tank[J]. Physics of Fluids, 2011, 23(6):042101.
[12] AKYILDIZ H. A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank[J]. Journal of Sound & Vibration, 2012, 331(1):41-52.
[13] JUNG J H, YOON H S, LEE C Y, et al. Effect of the vertical baffle height on the liquid sloshing in a three-dimensional rectangular tank[J]. Ocean Engineering, 2012, 44(1):79-89.
[14] WANG W, PENG Y, ZHOU Y, et al. Liquid sloshing in partly-filled laterally-excited cylindrical tanks equipped with multi baffles[J]. Applied Ocean Research, 2016, 59:543-563.
[15] YANG Q, JONES V, MCCUE L. Free-surface flow interactions with deformable structures using an SPH-FEM model[J]. Ocean Engineering, 2012, 55(15):136-147.
[16] CHEN Z, ZONG Z, LI H T, et al. An investigation into the pressure on solid walls in 2D sloshing using SPH method[J]. Ocean Engineering, 2013, 59(2):129-141.
[17] BRAR G S, SINGH S. An experimental and CFD analysis of sloshing in a tanker[J]. Procedia Technology, 2014, 14(4):490-496.
[18] JIN H, LIU Y, LI H J. Experimental study on sloshing in a tank with an inner horizontal perforated plate[J]. Ocean Engineering, 2014, 82(2):75-84.
[19] REBOUILLAT S, LIKSONOV D. Fluid-structure interaction in partially filled liquid containers:A comparative review of numerical approaches[J]. Computers & Fluids, 2010, 39(5):739-746.
[20] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225.
[21] WHITAKER S. Flow in porous media I:A theoretical derivation of Darcy's law[J]. Transport in Porous Media, 1986, 1(1):3-25.
[22] TAIT M J, EL DAMATTY A A, ISYUMOV N, et al. Numerical flow models to simulate tuned liquid dampers (TLD) with slat screens[J]. Journal of Fluids & Structures, 2005, 20(8):1007-1023.
[23] ZHAO W, YANG J, HU Z, et al. Hydrodynamics of a 2D vessel including internal sloshing flows[J]. Ocean Engineering, 2014, 84(4):45-53.
[1] LI Yu, WANG Xiangqin, MIN Jingchun. Numerical simulation of fuel flow and heat transfer in a serpentine tube considering the fuel variable properties[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(2): 337-345.
[2] SHI Yunjiao, ZHAO Ningbo, ZHENG Hongtao. Impact of inlet distortion on the flow characteristics of a heavy-duty gas turbine cylinder pressure[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 90-98.
[3] LI Congjian, GAO Hang, LIU Yi. Fast reconstruction of a wind field based on numerical simulation and machine learning[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 882-887.
[4] ZHONG Maohua, HU Peng, CHEN Junfeng, CHENG Huihang, WU Le, WEI Xuan. Research for smoke control in a subway tunnel under the ceiling multi-point vertical smoke exhaust[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(5): 754-764.
[5] SUN Jihao, LUO Shaowen, ZHAO Ningbo, YANG Huiling, ZHENG Hongtao. Comparison of NOx numerical models for methane/air combustion simulations[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 623-632.
[6] SUN Yifan, ZHU Wei, WU Yuxin, QI Haiying. The applicability study of Gao-Yong turbulence model to boundary layer transitions[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 642-648.
[7] LIU Yu, ZHAO Miao, ZHANG Zhang, JIA He, HUANG Wei. Simulation of thermochemical nonequilibrium flow around a conical deceleration structure[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 386-393,413.
[8] GAO Chang, LI Yanjun, YU Li, NIE Shunchen. Effect of sail fullness on the aerodynamic performance of ringsail parachutes[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 322-329.
[9] CHEN Guanhua, CHEN Yaqian, ZHOU Ning, JIA He, RONG Wei, XUE Xiaopeng. Flat circular parachute with lateral mobility[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 338-347.
[10] YAN Huihui, LI Haoyu, ZHOU Bohao, ZHANG Yuzhou, LAN Xudong. Research and optimization of the mechanism of centrifugal compressor[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(10): 1672-1685.
[11] GAO Qunxiang, SUN Qi, PENG Wei, ZHANG Ping, ZHAO Gang. Whole process simulation method of sulfuric acid decomposition in the iodine-sulfur cycle for hydrogen production[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 24-32.
[12] SHI Lin, XU Qianghui. Fundamental studies of air injection for heavy crude oil recovery and its applications[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(4): 722-734.
[13] HE Xin, XUE Rui, ZHENG Xing, ZHANG Qian, GONG Jianliang. Skin friction reduction for boundary layer combustion in a scramjet engine[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 562-572.
[14] YAN Huihui, ZHOU Bohao, LI Hao, ZHANG Yuzhou, LAN Xudong. Turboshaft engine compressor design using ANSYS[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 549-554,580.
[15] ZHANG Zhihan, LIU Hui, L�Zhenlei, HOU Yansong, SUN Lifeng, WANG Shi, WU Zhaoxia, LIU Yaqiang. Design and numerical simulations of a large animal SPECT system[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1875-1883.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd