Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2019, Vol. 59 Issue (10) : 847-853     DOI: 10.16511/j.cnki.qhdxxb.2019.22.019
MECHANICAL ENGINEERING |
Parallel simulations of large-scale particle-fluid two-phase flows with the lattice Boltzmann method based on an MPI+OpenMP mixed programming model
HE Qiang, LI Yongjian, HUANG Weifeng, LI Decai, HU Yang, WANG Yuming
State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
Download: PDF(5903 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  This paper presents lattice Boltzmann method (LBM) analyses of three-dimensional, particle-fluid two-phase flows based on the MPI+OpenMP mixed programming model where the cluster nodes used the MPI parallelism with further fine-grained nodes using the OpenMP parallel calculation. The algorithm is optimized according to the characteristics of particle-fluid flows. The algorithm was then used to analyze a particle deposition problem to test the acceleration capabilities of the parallel algorithm. The results show that the algorithm has good speedup and scalability and that its computational complexity is insensitive to the number of particles, which is good for large-scale two-phase flow analyses.
Keywords lattice Boltzmann method (LBM)      MPI+OpenMP      particle-fluid two-phase flow     
Issue Date: 14 October 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Qiang
LI Yongjian
HUANG Weifeng
LI Decai
HU Yang
WANG Yuming
Cite this article:   
HE Qiang,LI Yongjian,HUANG Weifeng, et al. Parallel simulations of large-scale particle-fluid two-phase flows with the lattice Boltzmann method based on an MPI+OpenMP mixed programming model[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(10): 847-853.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2019.22.019     OR     http://jst.tsinghuajournals.com/EN/Y2019/V59/I10/847
  
  
  
  
  
  
  
  
  
[1] LI Q, LUO K H, KANG Q J, et al. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer[J]. Progress in Energy and Combustion Science, 2016, 52:62-105.
[2] HARTING J, FRIJTERS S, RAMAIOLI M, et al. Recent advances in the simulation of particle-laden flows[J]. European Physical Journal Special Topics, 2014, 223(11):2253-2267.
[3] CHEN S Y, DOOLEN G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30(1):329-364.
[4] LI H B, LU X Y, FANG H P, et al. Force evaluations in lattice Boltzmann simulations with moving boundaries in two dimensions[J]. Physical Review E, 2004, 70(2):026701.
[5] GUO Z L, ZHENG C G, SHI B C. An extrapolation method for boundary conditions in lattice Boltzmann method[J]. Physics of Fluids, 2002, 14(6):2007-2010.
[6] KOCH D L, HILL R J. Inertial effects in suspension and porous-media flows[J]. Annual Review of Fluid Mechanics, 2001, 33:619-647.
[7] ZHANG X R, JIN L C, NIU X D, et al. Lattice Boltzmann simulation for magnetic fluids in porous medium[C]//12th International Conference on Magnetic Fluids. Amsterdam, Netherlands:Elsevier, 2010, 9:162-166.
[8] LADD A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results[J]. Journal of Fluid Mechanics, 1994, 271:311-339.
[9] LADD A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation[J]. Journal of Fluid Mechanics, 1994, 271:285-309.
[10] AIDUN C K, LU Y N, DING E J. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation[J]. Journal of Fluid Mechanics, 1998, 373:287-311.
[11] QI D W. Lattice-Boltzmann simulations of particles in non-zero-Reynolds-number flows[J]. Journal of Fluid Mechanics, 1999, 385:41-62.
[12] CHEN Y, CAI Q D, XIA Z H, et al. Momentum-exchange method in lattice Boltzmann simulations of particle-fluid interactions[J]. Physical Review E, 2013, 88:013303.
[13] LORENZ E, CAIAZZO A, HOEKSTRA A G. Corrected momentum exchange method for lattice Boltzmann simulations of suspension flow[J]. Physical Review E, 2009, 79(3):036705.
[14] MEI R W, LUO L S, SHYY W. An accurate curved boundary treatment in the lattice Boltzmann method[J]. Journal of Computational Physics, 1999, 155(2):307-330.
[15] FILIPPOVA O, HÄNEL D. Grid refinement for lattice-BGK models[J]. Journal of Computational Physics, 1998, 147(2):219-228.
[16] YU D Z, MEI R W, SHYY W. A unified boundary treatment in lattice Boltzmann method[C]//41st Aerospace Sciences Meeting and Exhibit. Reno, USA:AIAA, 2003.
[17] BOUZIDI M, FIRDAOUSS M, LALLEMAND P. Momentum transfer of a Boltzmann-lattice fluid with boundaries[J]. Physics of Fluids, 2001, 13(11):3452-3459.
[18] HU J J, TAO S, GUO Z L. An efficient unified iterative scheme for moving boundaries in lattice Boltzmann method[J]. Computers & Fluids, 2017, 144:34-43.
[19] TAO S, HU J J, GUO Z L. An investigation on momentum exchange methods and refilling algorithms for lattice Boltzmann simulation of particulate flows[J]. Computers & Fluids, 2016, 133:1-14.
[20] PAN C X, PRINS J F, MILLER C T. A high-performance lattice Boltzmann implementation to model flow in porous media[J]. Computer Physics Communications, 2004, 158(2):89-105.
[21] VELIVELLI A C, BRYDEN K M. A cache-efficient implementation of the lattice Boltzmann method for the two-dimensional diffusion equation[J]. Concurrency and Computation:Practice and Experience, 2004, 16(14):1415-1432.
[22] SCHEPKE C, MAILLARD N, NAVAUX P O A. Parallel lattice Boltzmann method with blocked partitioning[J]. International Journal of Parallel Programming, 2009, 37(6):593-611.
[23] VIDAL D, ROY R, BERTRAND F. A parallel workload balanced and memory efficient lattice-Boltzmann algorithm with single unit BGK relaxation time for laminar Newtonian flows[J]. Computers & Fluids, 2010, 39(8):1411-1423.
[24] STRATFORD K, PAGONABARRAGA I. Parallel simulation of particle suspensions with the lattice Boltzmann method[J]. Computers & Mathematics with Applications, 2008, 55(7):1585-1593.
[25] GVNTHER F, JANOSCHEK F, FRIJTERS S, et al. Lattice Boltzmann simulations of anisotropic particles at liquid interfaces[J]. Computers & Fluids, 2013, 80:184-189.
[26] LALLEMAND P, LUO L S. Theory of the lattice Boltzmann method:Dispersion, dissipation, isotropy, Galilean invariance, and stability[J]. Physical Review E, 2000, 61(6):6546-6562.
[27] D'HUMIERES D, GINZBURG I, KRAFCZYK M, et al. Multiple-relaxation-time lattice Boltzmann models in 3D[R]. Washington DC, USA:NASA, 2002.
[28] KRVGER T, KUSUMAATMAJA H, KUZMIN H, et al. The lattice Boltzmann method:Principles and practice[M]. Cham, Switzerland:Springer, 2017.
[29] NGUYEN N Q, LADD A J C. Lubrication corrections for lattice-Boltzmann simulations of particle suspensions[J]. Physical Review E, 2002, 66(4):046708.
[30] PENG C, TENG Y H, HWANG B, et al. Implementation issues and benchmarking of lattice Boltzmann method for moving rigid particle simulations in a viscous flow[J]. Computers & Mathematics with Applications, 2016, 72(2):349-374.
[31] ALLEN M P, TILDESLEY D J. Computer simulation of liquids[M]. Oxford, UK:Oxford University Press, 1987.
[32] TEN CATE A, NIEUWSTAD C H, DERKSEN J J, et al. Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity[J]. Physics of Fluids, 2002, 14(11):4012-4025.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd