Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2019, Vol. 59 Issue (10) : 861-865     DOI: 10.16511/j.cnki.qhdxxb.2019.21.026
PHYSICS AND ENGINEERING PHYSICS |
Mesh generation method with variable weights based on gradient changes in a radiation field
HE Liang1,2, LI Hua1, ZHAO Yuan1, LIU Liye1, CAO Qinjian1, LI Junli2
1. Department of Health Physics, Radiation Dosimetry Laboratory, China Institute for Radiation Protection, Taiyuan 030006, China;
2. Department of Engineering Physics, Tsinghua University, Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Beijing 100084, China
Download: PDF(2570 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  3-D radiation field data is used for dose evaluations and design optimization. This paper presents a mesh generation method that uses variable weights based on gradient changes in a radiation field to improve the calculational speed and 3-D visualizations of the radiation field. The 3-D mesh has different densities that are arranged based on the radiation field gradients to balance the computational accuracy and efficiency. The point kernel integral method was used to verify the method. The results show that this non-uniform mesh generation method with variable weights effectively shortens the computing time for the point kernel integral method results. This method also provides better visualization of the radiation field. Thus, this study reduces the calculational time for the point kernel integral problem and gives better results for visualization and dose assessments of 3-D radiation fields in nuclear facilities.
Keywords 3-D radiation field      point-kernel integration      mesh generation      dose visualization     
Issue Date: 14 October 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Liang
LI Hua
ZHAO Yuan
LIU Liye
CAO Qinjian
LI Junli
Cite this article:   
HE Liang,LI Hua,ZHAO Yuan, et al. Mesh generation method with variable weights based on gradient changes in a radiation field[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(10): 861-865.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2019.21.026     OR     http://jst.tsinghuajournals.com/EN/Y2019/V59/I10/861
  
  
  
  
  
  
  
  
  
[1] IAEA. International status and prospects for nuclear power 2017[R/OL]. (2017-07-28)[2019-01-10]. https://www-legacy.iaea.org/About/Policy/GC/GC61/GC61InfDocuments/English/gc61inf-8_en.pdf
[2] 王丹. 解读"十三五"发展规划,助力核电发展[J]. 中国核电, 2017(2):157-160.WANG D. Interpretation of the 13th five-year development plan in support of nuclear power development[J]. China Nuclear Power, 2017(2):157-160. (in Chinese)
[3] 刘华. 辐射防护最优化方法及其应用[J]. 核安全, 2007(2):1-6.LIU H. Optimization methods of radiation protection and its application[J]. Nuclear Safety, 2007(2):1-6. (in Chinese)
[4] 潘志强. 辐射安全手册[M]. 北京:科学出版社, 2011.PAN Z Q. Radiation safety manual[M]. Beijing:Science Press, 2011. (in Chinese)
[5] SAUNDERS P, RAHON T, QUINN D, et al. Demonstration of advanced 3-D ALARA planning prototypes for dose reduction[R]. California:Electric Power Research Institute (EPRI), 2012.
[6] MóL A C A, PEREIRA C M N A, FREITAS V G G, et al. Radiation dose rate map interpolation in nuclear plants using neural networks and virtual reality techniques[J]. Annals of Nuclear Energy, 2011, 38(2-3):705-712.
[7] YUKIHARU O, MITSUKO F, KIYOTAKA S, et al. A System for the calculation and visualisation of radiation field for maintenance support in nuclear power plants[J]. Radiation Protection Dosimetry, 2005, 116(1-4):592-596.
[8] VERMEERSCH F. ALARA pre-job studies using the VISIPLAN 3D ALARA planning tool[J]. Radiation Protection Dosimetry, 2005, 115(1-4):294-297.
[9] 戴波, 张永领, 周斌,等. 反应堆退役仿真技术研究方案[J]. 核动力工程, 2013, 34(3):168-171.DAI B, ZHANG Y L, ZHOU B, et al. Study scheme of reactor decommissioning simulation technology[J]. Nuclear Power Engineering, 2013, 34(3):168-171. (in Chinese)
[10] 张永领, 胡一非, 刘猛,等. 反应堆退役三维辐射场实时计算及可视化[J]. 辐射防护, 2018(1):19-25.ZHANG Y L, HU Y F, LIU M, et al. Real-time computation and visualization of 3-D radiation field for nuclear reactor decommissioning scene[J]. Radiation Protection, 2018(1):19-25. (in Chinese)
[11] 唐邵华, 吕炜枫, 刘杰,等. 核电站三维剂量场评价系统的开发及应用[J]. 辐射防护, 2017, 37(5):347-354.TANG S H, LV W F, LIU J, et al. Development and application of 3-D dose rate field evaluation system[J]. Radiation Protection, 2017, 37(5):347-354. (in Chinese)
[12] 李春槐, 张立吾. 几何空间装配法在点核积分计算中的应用[J]. 核动力工程, 1988(5):42-52.LI C K, ZHANG L W. Application of geometry space configuration method in point-kernel integral calculation[J]. Nuclear Power Engineering, 1988(5):42-52. (in Chinese)
[13] 李华, 赵原, 刘立业等. 基于MCNP对γ射线吸收剂量累积因子的计算与研究[J]. 辐射防护, 2017, 37(3):161-168.LI H, ZHAO Y, LIU L Y, et al. Research on gamma ray buildup factor for energy absorption based on MCNP[J]. Radiation Protection, 2017, 37(3):161-168. (in Chinese)
[14] 李华, 赵原, 刘立业等. 介质尺寸对水中γ射线吸收剂量累积因子的影响[J]. 清华大学学报(自然科学版), 2017, 57(5):525-529.LI H, ZHAO Y, LIU L Y, et al. Effect of medium size on the γ-ray buildup factor for energy absorption in water[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(5):525-529. (in Chinese)
[1] LI Hua, ZHAO Yuan, CAO Qinjian, HE Liang, LI Junli, LIU Liye. γ-radiation field reconstruction method basedon source activity inversion calculations[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(10): 880-886.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd