ROCK-FILLED CONCRETE |
|
|
|
|
|
Simulation of the working behavior of Shibahe reservoir rock-filled concrete gravity dam during construction |
CHENG Heng1, ZHOU Qiujing1, LOU Shijian3, ZHANG Guoxin1,2, LIU Yi1,2, LEI Zhengqi1 |
1. China Institute of Water Resources and Hydropower Research, Beijing 100038, China; 2. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 100038, China; 3. Zunyi Survey and Design Institute of Water Conservancy and Hydropower Co. Ltd., Zunyi 563002, China |
|
|
Abstract Key thermal parameters of self-compacting, rock-filled, and normal concrete of the rock-filled concrete gravity dam of Shibahe Reservoir in Renhuai City, Guizhou Province, are inverted based on its design data and temperature-monitoring data. On this basis, the finite element simulation method is used to simulate the working behavior during the construction of the dam, including the dam pouring, concrete hardening, and meteorological change processes. Next, the distribution and evolution law of the temperature field and stress field of the dam are analyzed to evaluate the overall safety of the dam. The results show that the temperature process of the dam body obtained by simulation inversion can truly reflect the temperature variation of the dam body. The maximum temperature in the dam body is typically reached within 3—5 d, and the temperature rise of hydration heat is between 4—7 ℃. The maximum temperature of pouring concrete in summer is about 35.0—39.5 ℃, while that in winter is about 25—28 ℃. Although the partial tensile stress on the spillway section surface is large in the low-temperature season, the stress in other parts does not exceed the concrete strength, and the dam safety can be guaranteed. The result indicates that pouring concrete on the large warehouse surface of the rock-filled concrete gravity dam is feasible.
|
Keywords
rock-filled concrete
gravity dam
construction period
simulation
working behavior
|
Issue Date: 18 August 2022
|
|
|
[1] 金峰, 安雪晖, 石建军, 等. 堆石混凝土及堆石混凝土大坝[J]. 水利学报, 2005, 36(11): 1347-1352. JIN F, AN X H, SHI J J, et al. Study on rock-fill concrete dam[J]. Journal of Hydraulic Engineering, 2005, 36(11): 1347-1352. (in Chinese) [2] AN X H, WU Q, JIN F, et al. Rock-filled concrete, the new norm of SCC in hydraulic engineering in China[J]. Cement and Concrete Composites, 2014, 54: 89-99. [3] 安雪晖, 金峰, 石建军, 等. 自密实混凝土充填堆石体试验研究[J]. 混凝土, 2005(1): 3-6, 42. AN X H, JIN F, SHI J J, et al. Experimental study of self-compacting concrete filled prepacked rock[J]. Concrete, 2005(1): 3-6, 42. (in Chinese) [4] 张文胜, 何涛洪, 张全意, 等. 堆石混凝土重力坝设计创新与应用实践[J]. 红水河, 2020, 39(2): 10-14. ZHANG W S, HE T H, ZHANG Q Y, et al. Design innovation and application practice of rockfill concrete gravity dam[J]. Hongshui River, 2020, 39(2): 10-14. (in Chinese) [5] 李成业, 徐瑛丹. 堆石混凝土施工技术在浯溪口大坝工程中的应用研究[J]. 水利建设与管理, 2015, 35(12): 20-23. LI C Y, XU Y D. Research on applying rock-fill concrete construction technology in Wuxikou dam project[J]. Water Conservancy Construction and Management, 2015, 35(12): 20-23. (in Chinese) [6] 曾旭, 何涛洪, 张全意, 等. 堆石混凝土技术在打鼓台水库的应用与探索[J]. 水利规划与设计, 2019(8): 94-96, 127. ZENG X, HE T H, ZHANG Q Y, et al. Application and exploration of rockfill concrete technology in drumming reservoir[J]. Water Resources Planning and Design, 2019(8): 94-96, 127. (in Chinese) [7] 张国新, 杨波, 张景华. RCC拱坝的封拱温度与温度荷载研究[J]. 水利学报, 2011, 42(7): 812-818. ZHANG G X, YANG B, ZHANG J H. Grouting temperature and thermal load of RCC arch dam[J]. Journal of Hydraulic Engineering, 2011, 42(7): 812-818. (in Chinese) [8] LIU C N, AHN C R, AN X H, et al. Life-cycle assessment of concrete dam construction: Comparison of environmental impact of rock-filled and conventional concrete[J]. Journal of Construction Engineering and Management, 2013, 139(12): A4013009. [9] 何世钦, 陈宸, 周虎, 等. 堆石混凝土综合性能的研究现状[J]. 水力发电学报, 2017, 36(5): 10-18. HE S Q, CHEN C, ZHOU H, et al. Current research on comprehensive properties of rock filled concrete[J]. Journal of Hydroelectric Engineering, 2017, 36(5): 10-18. (in Chinese) [10] ZHANG X F, LIU Q, ZHANG X, et al. A study on adiabatic temperature rise test and temperature stress simulation of rock-fill concrete[J]. Mathematical Problems in Engineering, 2018, 2018: 3964926. [11] JIN F, ZHOU H, AN X H. Research on rock-filled concrete dam[J]. International Journal of Civil Engineering, 2019, 17(4): 495-500. [12] 赵运天, 解宏伟, 周虎. 堆石混凝土拱坝温度应力仿真及温控措施研究[J]. 水利水电技术, 2019, 50(1): 90-97. ZHAO Y T, XIE H W, ZHOU H. Study on simulation of temperature stress and temperature control measures for rock-filled concrete arch dam[J]. Water Resources and Hydropower Engineering, 2019, 50(1): 90-97. (in Chinese) [13] 王辉, 马嘉均, 周虎, 等. 堆石混凝土单轴受压力学性能[J]. 清华大学学报(自然科学版), 2022, 62(2): 339-346. WANG H, MA J J, ZHOU H, et al. Mechanical behavior of rock-filled concrete with uniaxial compression[J]. Journal of Tsinghua University (Science & Technology), 2022, 62(2): 339-346. (in Chinese) [14] 杨丽群, 曾旭. 堆石混凝土坝材料性能探讨[J]. 红水河, 2021, 40(2): 41-46, 61. YANG L Q, ZENG X. Discussion on material properties of rock-fill concrete dam[J]. Hongshui River, 2021, 40(2): 41-46, 61. (in Chinese) [15] 张国新. SAPTIS: 结构多场仿真与非线性分析软件开发及应用(之一)[J]. 水利水电技术, 2013, 44(1): 31-35, 44. ZHANG G X. Development and application of SAPTIS—A software of multi-field simulation and nonlinear analysis of complex structures(Part I)[J]. Water Resources and Hydropower Engineering, 2013, 44(1): 31-35, 44. (in Chinese) [16] 周秋景, 张国新. SAPTIS: 结构多场仿真与非线性分析软件开发及应用(之二)[J]. 水利水电技术, 2013, 44(9): 39-43, 48. ZHOU Q J, ZHANG G X. Development and application of SAPTIS—A software of multi-field simulation and nonlinear analysis of complex structures (Part II)[J]. Water Resources and Hydropower Engineering, 2013, 44(9): 39-43, 48. (in Chinese) [17] 张磊, 张国新. SAPTIS: 结构多场仿真与非线性分析软件开发及应用(之三)[J]. 水利水电技术, 2014, 45(1): 52-55, 76. ZHANG L, ZHANG G X. Development and application of SAPTIS—A software of multi-field simulation and nonlinear analysis of complex structures (Part III)[J]. Water Resources and Hydropower Engineering, 2014, 45(1): 52-55, 76. (in Chinese) [18] 金峰, 张国新, 张全意. 绿塘堆石混凝土拱坝施工期温度分析[J]. 水利学报, 2020, 51(6): 749-756. JIN F, ZHANG G X, ZHANG Q Y. Temperature analysis for Lyutang RFC arch dam in construction period[J]. Journal of Hydraulic Engineering, 2020, 51(6): 749-756. (in Chinese) [19] 高继阳, 张国新, 杨波. 堆石混凝土坝温度应力仿真分析及温控措施研究[J]. 水利水电技术, 2016, 47(1): 31-35, 97. GAO J Y, ZHANG G X, YANG B. Study on simulative analysis of temperature stress and temperature control measures for rock-filled concrete dam[J]. Water Resources and Hydropower Engineering, 2016, 47(1): 31-35, 97. (in Chinese) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|