Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2022, Vol. 62 Issue (9) : 1408-1416     DOI: 10.16511/j.cnki.qhdxxb.2022.21.017
ROCK-FILLED CONCRETE |
Simulation of the working behavior of Shibahe reservoir rock-filled concrete gravity dam during construction
CHENG Heng1, ZHOU Qiujing1, LOU Shijian3, ZHANG Guoxin1,2, LIU Yi1,2, LEI Zhengqi1
1. China Institute of Water Resources and Hydropower Research, Beijing 100038, China;
2. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 100038, China;
3. Zunyi Survey and Design Institute of Water Conservancy and Hydropower Co. Ltd., Zunyi 563002, China
Download: PDF(1687 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Key thermal parameters of self-compacting, rock-filled, and normal concrete of the rock-filled concrete gravity dam of Shibahe Reservoir in Renhuai City, Guizhou Province, are inverted based on its design data and temperature-monitoring data. On this basis, the finite element simulation method is used to simulate the working behavior during the construction of the dam, including the dam pouring, concrete hardening, and meteorological change processes. Next, the distribution and evolution law of the temperature field and stress field of the dam are analyzed to evaluate the overall safety of the dam. The results show that the temperature process of the dam body obtained by simulation inversion can truly reflect the temperature variation of the dam body. The maximum temperature in the dam body is typically reached within 3—5 d, and the temperature rise of hydration heat is between 4—7 ℃. The maximum temperature of pouring concrete in summer is about 35.0—39.5 ℃, while that in winter is about 25—28 ℃. Although the partial tensile stress on the spillway section surface is large in the low-temperature season, the stress in other parts does not exceed the concrete strength, and the dam safety can be guaranteed. The result indicates that pouring concrete on the large warehouse surface of the rock-filled concrete gravity dam is feasible.
Keywords rock-filled concrete      gravity dam      construction period      simulation      working behavior     
Issue Date: 18 August 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHENG Heng
ZHOU Qiujing
LOU Shijian
ZHANG Guoxin
LIU Yi
LEI Zhengqi
Cite this article:   
CHENG Heng,ZHOU Qiujing,LOU Shijian, et al. Simulation of the working behavior of Shibahe reservoir rock-filled concrete gravity dam during construction[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1408-1416.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2022.21.017     OR     http://jst.tsinghuajournals.com/EN/Y2022/V62/I9/1408
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 金峰, 安雪晖, 石建军, 等. 堆石混凝土及堆石混凝土大坝[J]. 水利学报, 2005, 36(11): 1347-1352. JIN F, AN X H, SHI J J, et al. Study on rock-fill concrete dam[J]. Journal of Hydraulic Engineering, 2005, 36(11): 1347-1352. (in Chinese)
[2] AN X H, WU Q, JIN F, et al. Rock-filled concrete, the new norm of SCC in hydraulic engineering in China[J]. Cement and Concrete Composites, 2014, 54: 89-99.
[3] 安雪晖, 金峰, 石建军, 等. 自密实混凝土充填堆石体试验研究[J]. 混凝土, 2005(1): 3-6, 42. AN X H, JIN F, SHI J J, et al. Experimental study of self-compacting concrete filled prepacked rock[J]. Concrete, 2005(1): 3-6, 42. (in Chinese)
[4] 张文胜, 何涛洪, 张全意, 等. 堆石混凝土重力坝设计创新与应用实践[J]. 红水河, 2020, 39(2): 10-14. ZHANG W S, HE T H, ZHANG Q Y, et al. Design innovation and application practice of rockfill concrete gravity dam[J]. Hongshui River, 2020, 39(2): 10-14. (in Chinese)
[5] 李成业, 徐瑛丹. 堆石混凝土施工技术在浯溪口大坝工程中的应用研究[J]. 水利建设与管理, 2015, 35(12): 20-23. LI C Y, XU Y D. Research on applying rock-fill concrete construction technology in Wuxikou dam project[J]. Water Conservancy Construction and Management, 2015, 35(12): 20-23. (in Chinese)
[6] 曾旭, 何涛洪, 张全意, 等. 堆石混凝土技术在打鼓台水库的应用与探索[J]. 水利规划与设计, 2019(8): 94-96, 127. ZENG X, HE T H, ZHANG Q Y, et al. Application and exploration of rockfill concrete technology in drumming reservoir[J]. Water Resources Planning and Design, 2019(8): 94-96, 127. (in Chinese)
[7] 张国新, 杨波, 张景华. RCC拱坝的封拱温度与温度荷载研究[J]. 水利学报, 2011, 42(7): 812-818. ZHANG G X, YANG B, ZHANG J H. Grouting temperature and thermal load of RCC arch dam[J]. Journal of Hydraulic Engineering, 2011, 42(7): 812-818. (in Chinese)
[8] LIU C N, AHN C R, AN X H, et al. Life-cycle assessment of concrete dam construction: Comparison of environmental impact of rock-filled and conventional concrete[J]. Journal of Construction Engineering and Management, 2013, 139(12): A4013009.
[9] 何世钦, 陈宸, 周虎, 等. 堆石混凝土综合性能的研究现状[J]. 水力发电学报, 2017, 36(5): 10-18. HE S Q, CHEN C, ZHOU H, et al. Current research on comprehensive properties of rock filled concrete[J]. Journal of Hydroelectric Engineering, 2017, 36(5): 10-18. (in Chinese)
[10] ZHANG X F, LIU Q, ZHANG X, et al. A study on adiabatic temperature rise test and temperature stress simulation of rock-fill concrete[J]. Mathematical Problems in Engineering, 2018, 2018: 3964926.
[11] JIN F, ZHOU H, AN X H. Research on rock-filled concrete dam[J]. International Journal of Civil Engineering, 2019, 17(4): 495-500.
[12] 赵运天, 解宏伟, 周虎. 堆石混凝土拱坝温度应力仿真及温控措施研究[J]. 水利水电技术, 2019, 50(1): 90-97. ZHAO Y T, XIE H W, ZHOU H. Study on simulation of temperature stress and temperature control measures for rock-filled concrete arch dam[J]. Water Resources and Hydropower Engineering, 2019, 50(1): 90-97. (in Chinese)
[13] 王辉, 马嘉均, 周虎, 等. 堆石混凝土单轴受压力学性能[J]. 清华大学学报(自然科学版), 2022, 62(2): 339-346. WANG H, MA J J, ZHOU H, et al. Mechanical behavior of rock-filled concrete with uniaxial compression[J]. Journal of Tsinghua University (Science & Technology), 2022, 62(2): 339-346. (in Chinese)
[14] 杨丽群, 曾旭. 堆石混凝土坝材料性能探讨[J]. 红水河, 2021, 40(2): 41-46, 61. YANG L Q, ZENG X. Discussion on material properties of rock-fill concrete dam[J]. Hongshui River, 2021, 40(2): 41-46, 61. (in Chinese)
[15] 张国新. SAPTIS: 结构多场仿真与非线性分析软件开发及应用(之一)[J]. 水利水电技术, 2013, 44(1): 31-35, 44. ZHANG G X. Development and application of SAPTIS—A software of multi-field simulation and nonlinear analysis of complex structures(Part I)[J]. Water Resources and Hydropower Engineering, 2013, 44(1): 31-35, 44. (in Chinese)
[16] 周秋景, 张国新. SAPTIS: 结构多场仿真与非线性分析软件开发及应用(之二)[J]. 水利水电技术, 2013, 44(9): 39-43, 48. ZHOU Q J, ZHANG G X. Development and application of SAPTIS—A software of multi-field simulation and nonlinear analysis of complex structures (Part II)[J]. Water Resources and Hydropower Engineering, 2013, 44(9): 39-43, 48. (in Chinese)
[17] 张磊, 张国新. SAPTIS: 结构多场仿真与非线性分析软件开发及应用(之三)[J]. 水利水电技术, 2014, 45(1): 52-55, 76. ZHANG L, ZHANG G X. Development and application of SAPTIS—A software of multi-field simulation and nonlinear analysis of complex structures (Part III)[J]. Water Resources and Hydropower Engineering, 2014, 45(1): 52-55, 76. (in Chinese)
[18] 金峰, 张国新, 张全意. 绿塘堆石混凝土拱坝施工期温度分析[J]. 水利学报, 2020, 51(6): 749-756. JIN F, ZHANG G X, ZHANG Q Y. Temperature analysis for Lyutang RFC arch dam in construction period[J]. Journal of Hydraulic Engineering, 2020, 51(6): 749-756. (in Chinese)
[19] 高继阳, 张国新, 杨波. 堆石混凝土坝温度应力仿真分析及温控措施研究[J]. 水利水电技术, 2016, 47(1): 31-35, 97. GAO J Y, ZHANG G X, YANG B. Study on simulative analysis of temperature stress and temperature control measures for rock-filled concrete dam[J]. Water Resources and Hydropower Engineering, 2016, 47(1): 31-35, 97. (in Chinese)
[1] WANG Bin, ZHANG Jiwen, WU Dan. Aerial assembly measurement and control analysis method based on robot modeling[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(4): 724-737.
[2] REN Jianqiang, NI Shunjiang. Crowd guidance and control technology for public places[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(3): 471-477.
[3] LI Yu, WANG Xiangqin, MIN Jingchun. Numerical simulation of fuel flow and heat transfer in a serpentine tube considering the fuel variable properties[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(2): 337-345.
[4] SHI Yunjiao, ZHAO Ningbo, ZHENG Hongtao. Impact of inlet distortion on the flow characteristics of a heavy-duty gas turbine cylinder pressure[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 90-98.
[5] LIU Anbang, CHEN Xi, ZHAO Qianchuan, LI Borui. Optimization method for allocations of energy storage systems and tractions for metro systems[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1408-1414.
[6] YAN Zefan, LIU Rongzheng, LIU Bing, SHAO Youlin, LIU Malin. Molecular dynamics simulation of sintering behavior of SiC nanocoated particles[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1297-1308.
[7] LI Congjian, GAO Hang, LIU Yi. Fast reconstruction of a wind field based on numerical simulation and machine learning[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 882-887.
[8] ZHAO Li, HE Chang, SHU Yidan, CHEN Qinglin, ZHANG Bingjian. Monte Carlo simulation of propylene/propane adsorption thermodynamics on molecular sieves[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(5): 714-722.
[9] ZHONG Maohua, HU Peng, CHEN Junfeng, CHENG Huihang, WU Le, WEI Xuan. Research for smoke control in a subway tunnel under the ceiling multi-point vertical smoke exhaust[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(5): 754-764.
[10] WANG Zhexin, LIU Hui, CHENG Li, GAO Lilei, LV Zhenlei, JIANG Nianming, HE Zuoxiang, LIU Yaqiang. Design of dedicated collimator for whole-body bone scanning on single photon emission computed tomography based on Monte Carlo simulation[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(5): 811-817.
[11] AN Jian, CHEN Yuxuan, SU Xingyu, ZHOU Hua, REN Zhuyin. Applications and prospects of machine learning in turbulent combustion and engines[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 462-472.
[12] ZHOU Mingshuo, DING Siyu, WANG Xingjian. Review of subgrid models of the equation of state in the large eddy simulation of transcritical and supercritical flows and combustion[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 473-486.
[13] SUN Jihao, LUO Shaowen, ZHAO Ningbo, YANG Huiling, ZHENG Hongtao. Comparison of NOx numerical models for methane/air combustion simulations[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 623-632.
[14] SUN Yifan, ZHU Wei, WU Yuxin, QI Haiying. The applicability study of Gao-Yong turbulence model to boundary layer transitions[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 642-648.
[15] MO Yi, CHEN Fan, XU Xiaoyan, JIAO Zhe, WEI Gang, LIN Hongjun, XIAO Wei, WANG Fang, REN Zhuyin. Modeling and simulation of two-phase turbulent combustion in aeroengine combustors[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 670-680.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd