Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2022, Vol. 62 Issue (12) : 1864-1874     DOI: 10.16511/j.cnki.qhdxxb.2022.21.016
INFORMATION SCIENCE |
Collaborative optimization strategy of information and energy for distributed data centers
LIU Di1, CAO Junwei2, LIU Mingshuang3
1. Department of Automation, Tsinghua University, Beijing 100084, China;
2. Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China;
3. Shenzhen Tencent Computer System Co., Ltd., Shenzhen 518057, China
Download: PDF(6859 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  With the continuous expansion of data centers, the problem of large energy consumption has become increasingly prominent. Distributed data centers can enable power transfer through the distribution of computing tasks among multiple data centers and realize the balance between power consumption and computing delay through the power control of a single data center. Scheduling of computing tasks and power control of data center interact with each other, and their control effects are affected by multiple uncertainties. Therefore, a fast and reliable control method is required for realizing the collaborative optimization of the information and energy layers of the data center. First, a distributed data center collaborative optimization architecture is constructed. Then, the dynamic characteristics of multiple data center computing task allocation and single data center power optimization are analyzed based on the dynamic differential equation, and a unified adjustment model of the coupling optimization problem is constructed. Given the system operating cost and computing delay in constructing the objective function, the optimal control theory is introduced to solve the problem and realize the second-level collaborative optimal control of the information energy of the data center. Simulation results show that the high-frequency control based on the proposed algorithm can better track the fluctuation of renewable energy output and calculation tasks than the minute-level control and effectively improve the economic benefits of the system and the local consumption rate of renewable energy.
Keywords distributed data center      differential equation      collaborative optimization      renewable energy      optimal control     
Issue Date: 10 November 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Di
CAO Junwei
LIU Mingshuang
Cite this article:   
LIU Di,CAO Junwei,LIU Mingshuang. Collaborative optimization strategy of information and energy for distributed data centers[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1864-1874.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2022.21.016     OR     http://jst.tsinghuajournals.com/EN/Y2022/V62/I12/1864
  
  
  
  
  
  
  
  
  
  
  
[1] ZHANG S F, WANG P. Data center industry will play an important role in energy transformation[N/OL]. (2020-07-24)[2022-03-10]. https://baijiahao.baidu.com/s?id=1673076860372734884&wfr=spider&for=pc. (in Chinese) 张素芳, 王鹏. 数据中心行业在能源转型中将发挥重要作用[N/OL]. (2020-07-24)[2022-03-10]. https://baijiahao.baidu.com/s?id=1673076860372734884&wfr=spider&for=pc.
[2] LI Y, XIAO Z Q, NIE S S, et al. Review of research on generative adversarial network and its application in new energy data quality[J]. Southern Power System Technology, 2020, 14(2): 25-33. (in Chinese) 李洋, 肖泽青, 聂松松, 等. 生成对抗网络及其在新能源数据质量中的应用研究综述[J]. 南方电网技术, 2020, 14(2): 25-33.
[3] HUA H C, QIN Y C, CAO J W. Stochastic optimal control for energy internet: A bottom-up energy management approach[J]. IEEE Transactions on Industrial Informatics, 2019, 5(3): 1788-1797.
[4] Greenpeace, North China Electric Power University. Lighting up the green cloud: Research on energy consumption and renewable energy use potential of China's data center[R]. Beijing: Greenpeace, 2019. (in Chinese) 绿色和平组织, 华北电力大学. 点亮绿色云端: 中国数据中心能耗与可再生能源使用潜力研究[R]. 北京: 绿色和平组织, 2019.
[5] WANG J Y, ZHOU B Y, LIU W T, et al. Research progress and development trend of cross-layer energy efficiency optimization in data centers[J]. Scientia Sinica Informationis, 2020, 50(1): 1-24. (in Chinese) 王继业, 周碧玉, 刘万涛, 等. 数据中心跨层能效优化研究进展和发展趋势[J]. 中国科学: 信息科学, 2020, 50(1): 1-24.
[6] FENG C, WANG Y, CHEN Q X, et al. Review of energy management for data centers in energy internet[J]. Electric Power Automation Equipment, 2020, 40(7): 1-9. (in Chinese) 冯成, 王毅, 陈启鑫, 等. 能源互联网下的数据中心能量管理综述[J]. 电力自动化设备, 2020, 40(7): 1-9.
[7] YAO F, DEMERS A, SHENKER S. A scheduling model for reduced CPU energy[C]//Proceedings of the IEEE 36th Annual Foundations of Computer Science. Milwaukee, USA: IEEE, 1995: 374-382.
[8] ALBERS S. Energy-efficient algorithms[J]. Communications of the ACM, 2010, 53(5): 86-96.
[9] LI W X, QI H, XU R H, et al. Data center network flow scheduling progress and trends[J]. Chinese Journal of Computers, 2020, 43(4): 600-617. (in Chinese) 李文信, 齐恒, 徐仁海, 等. 数据中心网络流量调度的研究进展与趋势[J]. 计算机学报, 2020, 43(4): 600-617.
[10] WU G, GAO C W, CHEN S S, et al. A survey on data center power load optimization considering demand response[J]. Power System Technology, 2018, 42(11): 3782-3788. (in Chinese) 吴刚, 高赐威, 陈宋宋, 等. 考虑需求响应的数据中心用电负荷优化研究综述[J]. 电网技术, 2018, 42(11): 3782-3788.
[11] GAO C W, CAO X J, YAN H G, et al. Energy management of data center and prospect for participation in demand side resource scheduling[J]. Automation of Electric Power Systems, 2017, 41(23): 1-7. (in Chinese) 高赐威, 曹晓峻, 闫华光, 等. 数据中心电能管理及参与需求侧资源调度的展望[J]. 电力系统自动化, 2017, 41(23): 1-7.
[12] SONG J, SUN Z Z, LIU H, et al. Research advance on energy consumption optimization of hyper-powered data center[J]. Chinese Journal of Computers, 2018, 41(12): 2670-2688. (in Chinese) 宋杰, 孙宗哲, 刘慧, 等. 混合供电数据中心能耗优化研究进展[J]. 计算机学报, 2018, 41(12): 2670-2688.
[13] YU L, JIANG T, ZOU Y L. Real-time energy management for cloud data centers in smart microgrids[J]. IEEE Access, 2016, 4: 941-950.
[14] YU L, JIANG T, ZOU Y L. Distributed real-time energy management in data center microgrids[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 3748-3762.
[15] CAO X J, GAO C W, LI D Z, et al. Mixed operation model of data network and power network and its participation in the economic operation of power system[J]. Proceedings of the CSEE, 2018, 38(5): 1448-1456. (in Chinese) 曹晓峻, 高赐威, 李德智, 等. 数据网络与电力网络混合运行建模及其参与系统经济运行[J]. 中国电机工程学报, 2018, 38(5): 1448-1456.
[16] CHEN M, GAO C W, CHEN S S, et al. Bi-level economic dispatch modeling considering the load regulation potential of internet data centers[J]. Proceedings of the CSEE, 2019, 39(5): 1301-1313. (in Chinese) 陈敏, 高赐威, 陈宋宋, 等. 考虑数据中心用电负荷调节潜力的双层经济调度模型[J]. 中国电机工程学报, 2019, 39(5): 1301-1313.
[17] WANG Q, LIU Y B, HUANG Y, et al. Congestion management of urban power grid considering demand response of data center[J]. Power System Technology, 2020, 44(8): 3129-3138. (in Chinese) 王晴, 刘友波, 黄杨, 等. 考虑数据中心需求响应的城市电网阻塞管理[J]. 电网技术, 2020, 44(8): 3129-3138.
[18] GAO C W, WU G, CHEN S S. A model aimed at reducing power net loss considering frequency scaling of servers in geo-distributed data centers[J]. Proceedings of the CSEE, 2019, 39(6): 1673-1681. (in Chinese) 高赐威, 吴刚, 陈宋宋. 考虑地理分散的数据中心服务器频率调节的电网降损模型[J]. 中国电机工程学报, 2019, 39(6): 1673-1681.
[19] YU L, JIANG T, ZOU Y L, Distributed online energy management for data centers and electric vehicles in smart grid[J]. IEEE Internet of Things Journal, 2016, 3(6): 1373-1384.
[20] YANG T, JIANG H, HOU Y C, et al. Study on carbon neutrality regulation method of interconnected multi-datacenter based on spatio-temporal dual-dimensional computing load migration[J]. Proceedings of the CSEE, 2022, 42(1): 164-177. (in Chinese) 杨挺, 姜含, 侯昱丞, 等. 基于计算负荷时-空双维迁移的互联多数据中心碳中和调控方法研究[J]. 中国电机工程学报, 2022, 42(1): 164-177.
[21] ZHAO J, HUANG Y C, LI H Y, et al. Uncertainty optimization for return trajectory of vertical takeoff and vertical landing launch vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524829. (in Chinese) 赵剑, 黄悦琛, 李海阳, 等. 垂直起降运载火箭返回轨迹不确定性优化[J]. 航空学报, 2021, 42(11): 524829.
[22] HUANG S F, LI H, LI Y F, et al. The condition of phase sequence exchange technology applied to stability control and optimal control strateg[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2245-2254. (in Chinese) 黄少锋, 李慧, 李轶凡, 等. 换相序技术应用于稳定控制的条件及最优控制策略[J]. 电工技术学报, 2021, 36(11): 2245-2254.
[23] LI Q, WANG X F, MENG X, et al. Comprehensive energy management method of PEMFC hybrid power system based on online identification and minimal principle[J]. Proceedings of the CSEE, 2020, 40(21): 6991-7001. (in Chinese) 李奇, 王晓锋, 孟翔, 等. 基于在线辨识和极小值原理的PEMFC混合动力系统综合能量管理方法[J]. 中国电机工程学报, 2020, 40(21): 6991-7001.
[24] GOOGLE. Borg cluster workload traces[Z/OL]. (2021-10-22)[2022-03-11]. https://github.com/google/cluster-data.
[25] ASMUS P. Data centers and advanced microgrids[R]. Boulder: Navigant Consulting, 2017.
[26] LU X J, KONG F X, LIU X, et al. Bulk savings for bulk transfers: Minimizing the energy-cost for geo-distributed data centers[J]. IEEE Transactions on Cloud Computing, 2020, 8(1): 73-85.
[27] CHEUNG H, WANG S W, ZHUANG C Q, et al. A simplified power consumption model of information technology (IT) equipment in data centers for energy system real-time dynamic simulation[J]. Applied Energy, 2018, 222: 329-342.
[28] DAYARATHNA M, WEN Y G, FAN R. Data center energy consumption modeling: A survey[J]. IEEE Communications Surveys & Tutorials, 2016, 118(1): 732-794.
[29] KHOSRAVI A, ANDREW L L H, BUYYA R. Dynamic VM placement method for minimizing energy and carbon cost in geographically distributed cloud data centers[J]. IEEE Transactions on Sustainable Computing, 2017, 2(2): 183-196.
[30] LIU Z H, LIN M H, WIERMAN A, et al. Greening geographical load balancing[J]. IEEE/ACM Transactions on Networking, 2015, 23(2): 657-671.
[31] CHEN L X, ZHOU S, XU J. Computation peer offloading for energy-constrained mobile edge computing in small-cell networks[J]. IEEE/ACM Transactions on Networking, 2018, 26(4): 1619-1632.
[32] AHMAD F, VIJAYKUMAR T N. Joint optimization of idle and cooling power in data centers while maintaining response time[J]. ACM SIGPLAN Notices, 2010, 45(3): 243-256.
[33] LIU N, YU X H, WANG C, et al. Energy-sharing model with price-based demand response for microgrids of peer-to-peer prosumers[J]. IEEE Transactions on Power Systems, 2017, 32(5): 3569-3583.
[34] LEWIS F L, VRABIE D L, SYRMOS V L. Optimal control[M]. 3rd ed. Hoboken: John Wiley & Sons, 2012.
[35] BEAL L D R, HILL D C, MARTIN R A, et al. GEKKO optimization suite[J]. Processes, 2018, 6(8): 106.
[36] WU Z Y, ZHOU M, WANG J X, et al. Review on market mechanism to enhance the flexibility of power system under the dual-carbon target[J/OL]. Proceedings of the CSEE. [2022-03-11]. https://doi.org/10.13334/j.0258-8013.pcsee.212117. (in Chinese) 武昭原, 周明, 王剑晓, 等. 双碳目标下提升电力系统灵活性的市场机制综述[J/OL]. 中国电机工程学报. [2022-03-11]. https://doi.org/10.13334/j.0258-8013.pcsee.212117.
[37] WU Y Y, FANG J K, AI X M, et al. Real-time energy management of data center considering coordinated operation of multiple types of energy storage[J]. Electric Power Automation Equipment, 2021, 41(10): 82-89. (in Chinese) 吴云芸, 方家琨, 艾小猛, 等. 计及多种储能协调运行的数据中心实时能量管理[J]. 电力自动化设备, 2021, 41(10): 82-89.
[1] YANG Peng, LIU Feng, JIANG Qirong, MAO Hangyin. Large-disturbance stability of power systems with high penetration of renewables and inverters: Phenomena, challenges, and perspectives[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(5): 403-414.
[2] GUO Mengwu, ZHONG Hongzhi. Equivalence of two strictly bounding approaches for goal-oriented error estimation[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(4): 362-368.
[3] ZHONG Wei, SU Ruiyi, GUI Liangjin, FAN Zijie. Collaborative optimization of discrete structures based on a substructuring method[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(6): 572-579.
[4] FANG Shengnan, SONG Jian, SONG Haijun, TAI Yuzhuo, TRUONG Sinh Nguyen. Shifting control of automatic mechanical transmissions for electric vehicles based on optimal control theory[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(6): 580-586.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd