Research Article |
|
|
|
|
|
Decarbonization, hydrogen production, and value-added utilization of conventional fossil fuels under the background of “double-carbon” |
YU Hesheng1, QI Haiying2, TAN Zhongchao2,3 |
1. School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China; 2. Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China; 3. Department of Mechanical & Mechatronics Engineering, University of Waterloo, Waterloo N2L 3G1, Canada |
|
|
Abstract [Significance] China's strategic goals of "carbon peaks" and "carbon neutrality" will have a significant impact on the country's economic and social development despite the challenges along the way. The energy and power industry is an important player in carbon dioxide emissions in China and the main battlefield for constructing new energy systems and initiating relevant industrial revolutions. Despite the increasing maturity of carbon capture, utilization, and storage(CCUS) technologies, their deployment faces strong resistance from the industry because of the high cost and energy consumption. For example, the cost of carbon capture alone ranges between 260 and 280 RMB/t, corresponding to an increase in utility cost of 57.51% to 93.38%, depending on the region. More importantly, the planet earth has a physical limit for carbon storage, and an alternative technical route is needed to achieve cost-effective zero-carbon emissions. Nonetheless, despite the importance of constructing new energy systems, China's energy resources determine that we will continue to rely on traditional fossil fuels for decades to come.[Progress] Therefore, this study analyzes the feasibility of state-of-the-art technologies, such as catalytic conversion, carbon material and hydrogen utilization, and hydrogen-fired power generation. This study proposes the use of coal, gasoline, natural gas, and biomass as chemicals rather than fuels. The "fuels" are first converted into hydrogen-carbon chemicals and then decomposed into elemental carbon and hydrogen by catalytic conversion. The resultant elemental carbon is upgraded into high-value carbon materials, such as carbon nanotubes, graphene, and carbon fibers, which can be used for battery production. Meanwhile, hydrogen is used for energy production through combustion and fuel cells. The batteries produced using carbon materials can also support decentralized energy and energy storage from power plants. Regarding hydrogen-based energy production, developed countries, such as the USA, and Japan, have developed hydrogen-fired power generation aimed at commercialization in 2030 or earlier. We also conduct a feasibility study by pilot testing and techno-economic analysis. State-of-the-art experimental studies show that the key technical elements include (1) the production of carbon-hydrogen feedstock from coal, which is ready for deployment to the market; (2) the catalytic decomposition of hydrogen-carbon, e.g., CH4 and C3H6, into carbon nanotube and hydrogen, which is proven feasible at the pilot scale but requires further research and development in catalysis and fluidized bed reactor system for upscaled production; (3) the separation and purification of downstream products for high-purity carbon materials and hydrogen, where catalytic removal or recycling is essential to the pure carbon product, and membrane separation needs to be developed for pure hydrogen production; and (4) the most challenging, but essential, technology is the hydrogen-based gas turbine for power generation, with pilot plants built in the USA, Australia, and China for testing with 5% to 10% of hydrogen. Nonetheless, only catalytic conversion of CH4 can provide the amount of hydrogen needed in a power plant in real time. Thus, we conducted a techno-economic analysis by retrofitting a natural gas-fired power plant, where part of the natural gas is converted into hydrogen and the hydrogen is mixed with the incoming natural gas for power generation. The proposed pathway has been proven to be economically feasible, provided all of the technologies are ready.[Conclusions and Prospects] In conclusion, we propose a novel pathway to efficient and clean utilization of fossil fuels as resources to produce high-efficiency, low-carbon, and low-cost hydrogen and high-value-added carbon materials, as well as zero-emission power generation. Admittedly, it takes decades to reach the final goal, but this pathway is expected to tackle the economic challenges to achieving the "carbon peaks" and "carbon neutrality" goals (or "double carbon" goals) of the energy and power industry.
|
Keywords
“double carbon”
energy and power
decarbonization
hydrogen production
new energy systems
|
Issue Date: 22 July 2023
|
|
|
[1] 邱云昌. 扛起"双碳"时代使命[J]. 唯实, 2022(10):62-64. QIU Y C. Shoulder the era mission of the "double-carbon"[J]. Reality Only, 2022(10):62-64. (in Chinese) [2] 中华人民共和国科技部, 国家发展改革委, 工业和信息化部, 等. 科技部等九部门关于印发《科技支撑碳达峰碳中和实施方案(2022-2030年)》的通知[R/OL]. (2022-08-18)[2022-12-26]. https://www.most.gov.cn/xxgk/xinxifenlei/fdzdgknr/qtwj/qtwj2022/202208/t20220817_181986.html. Ministry of Science and Technology of the People's Republic of China, National Development and Reform Commission, Ministry of Industry and Information Technology of the People's Republic of China, et al.Nine authorities including the Ministry of Science and Technology issued the Notice on the Implementation Plan for Science and Technology to Support Carbon Peaking and Carbon Neutrality (2022-2030)[R/OL]. (2022-08-18)[2022-12-26]. https://www.most.gov.cn/xxgk/xinxifenlei/fdzdgknr/qtwj/qtwj2022/202208/t20220817_181986.html.(in Chinese) [3] 舒印彪, 赵勇, 赵良, 等. "双碳"目标下我国能源电力低碳转型路径[J/OL]. (2022-10-08)[2022-12-11]. https://doi.org/10.13334/j.0258-8013.pcsee.221407. SHU Y B, ZHAO Y, ZHAO L, et al. Study on low carbon energy transition path toward carbon peak and carbonneutrality[J/OL]. (2022-10-08)[2022-12-11]. https://doi.org/10.13334/j.0258-8013.pcsee.221407. (in Chinese) [4] 李俊峰, 李广. 碳中和——中国发展转型的机遇与挑战[J]. 环境与可持续发展, 2021, 46(1):50-57. LI J F, LI G. Carbon neutrality:Opportunities and challenges for development transformation in China[J]. Environment and Sustainable Development, 2021, 46(1):50-57. (in Chinese) [5] CHEN L, MSIGWA G, YANG M Y, et al. Strategies to achieve a carbon neutral society:A review[J]. Environmental Chemistry Letters, 2022, 20(4):2277-2310. [6] 胥蕊娜, 吉天成, 陆韬杰, 等. 二氧化碳地质封存与增产油/气/热利用技术中关键热质传递问题研究进展[J]. 清华大学学报(自然科学版), 2022, 62(4):634-654. XU R N, JI T C, LU T J, et al. Research progress on heat and mass transfer in carbon geological storage and enhanced oil/gas/geothermal recovery technology[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(4):634-654. (in Chinese) [7] 米剑锋, 马晓芳. 中国CCUS技术发展趋势分析[J]. 中国电机工程学报, 2019, 39(9):2537-2544. MI J F, MA X F. Development trend analysis of carbon capture, utilization and storage technology in China[J]. Proceedings of the CSEE, 2019, 39(9):2537-2544. (in Chinese) [8] 董瑞, 高林, 何松, 等. CCUS技术对我国电力行业低碳转型的意义与挑战[J]. 发电技术, 2022, 43(4):523-532. DONG R, GAO L, HE S, et al. Significance and challenges of CCUS technology for low-carbon transformation of China's power industry[J]. Power Generation Technology, 2022, 43(4):523-532. (in Chinese) [9] SINGH S, LU H R, CUI Q, et al. China baseline coal-fired power plant with post-combustion CO2 capture:2. Techno-economics[J]. International Journal of Greenhouse Gas Control, 2018, 78:429-436. [10] DUTTA R, NORD L O, BOLLAND O. Selection and design of post-combustion CO2 capture process for 600 MW natural gas fueled thermal power plant based on operability[J]. Energy, 2017, 121:643-656. [11] 袁家海, 王耀, 张为荣, 等. 中国燃煤电厂碳捕集与生物质掺烧碳捕集改造的经济性[J]. 气候变化研究进展, 2022, 18(6):764-776. YUAN J H, WANG Y, ZHANG W R, et al. Economic analysis of carbon capture and bioenergy with carbon capture retrofitting of Chinese coal-fired power plants[J]. Climate Change Research, 2022, 18(6):764-776. (in Chinese) [12] 吴振涛, 庞小兵, 韩张亮, 等. 二氧化碳捕集、利用与储存技术进展及趋势[J]. 三峡生态环境监测, 2022, 7(4):12-22. WU Z T, PANG X B, HAN Z L, et al. Progress and trends of carbon capture utilization and storage technology[J]. Ecology and Environmental Monitoring of Three Gorges, 2022, 7(4):12-22. (in Chinese) [13] 武永光. CCUS技术进展和应用情况[J]. 当代化工研究, 2022(11):118-120. WU Y G. Advances and application of CCUS technology[J]. Modern Chemical Research, 2022(11):118-120. (in Chinese) [14] 陈文颖, 吴宗鑫, 王伟中. CO2收集封存战略及其对我国远期减缓CO2排放的潜在作用[J]. 环境科学, 2007, 28(6):1178-1182. CHEN W Y, WU Z X, WANG W Z. Carbon capture and storage (CCS) and its potential role to mitigate carbon emission in China[J]. Environmental Science, 2007, 28(6):1178-1182. (in Chinese) [15] 李非凡, 薛贺来, 李黎明, 等. 传统制氢工艺的发展与展望[J]. 化学工程与装备, 2022(4):210-212. LI F F, XUE H L, LI L M, et al. Development and outlook of traditional hydrogen production processes[J]. Chemical Engineering & Equipment, 2022(4):210-212. (in Chinese) [16] 李雅欣, 何阳东, 刘韬, 等. 甲烷裂解制氢工艺研究进展及技术经济性对比分析[J]. 石油与天然气化工, 2022, 51(3):38-46, 55. LI Y X, HE Y D, LIU T, et al. Research progress and comparative techno-economic analysis of methane pyrolysistechnology for hydrogen production[J]. Chemical Engineering of Oil & Gas, 2022, 51(3):38-46, 55. (in Chinese) [17] 袁峥嵘. 浅谈生物质气化制氢工艺技术经济上的可行性[J]. 石油和化工设备, 2022, 25(6):135-138. YUAN Z R. Shallow to talk creature quality gasfies to makehydrogen craft technique possibility on economy[J]. Petro & Chemical Equipment, 2022, 25(6):135-138. (in Chinese) [18] 孙杰, 孙春文, 李吉刚, 等. 甲烷水蒸气重整反应研究进展[J]. 中国工程科学, 2013, 15(2):98-106. SUN J, SUN C W, LI J G, et al. Research development of steam mathane reforming reactions[J]. Strategic Study of CAE, 2013, 15(2):98-106. (in Chinese) [19] 黄兴, 赵博宇, LOUGOU B G, 等. 甲烷水蒸气重整制氢研究进展[J]. 石油与天然气化工, 2022, 51(1):53-61. HUANG X, ZHAO B Y, LOUGOU B G, et al. Research progress of methane steam reforming for hydrogen production[J]. Chemical Engineering of Oil & Gas, 2022, 51(1):53-61. (in Chinese) [20] 李斌, 王茂生, 戴晓辉, 等. 甲烷催化裂解制氢技术研究现状及展望[J]. 中外能源, 2022, 27(10):15-19. LI B, WANG M S, DAI X H, et al. Research status and prospect of catalytic cracking of methane for hydrogen production[J]. Sino-Global Energy, 2022, 27(10):15-19. (in Chinese) [21] 李智超. 炼厂减油增化措施探讨[J]. 辽宁化工, 2021, 50(7):1047-1049, 1053. LI Z C. Discussion on measures of reducing oil products and increasing chemical products in refinery[J]. Liaoning Chemical Industry, 2021, 50(7):1047-1049, 1053. (in Chinese) [22] 费华伟, 王婧, 高振宇. 2021年中国炼油工业发展状况与近期展望[J]. 国际石油经济, 2022, 30(4):48-54, 62. FEI H W, WANG J, GAO Z Y. Review and outlook ofChina's refining industry in 2021[J]. International Petroleum Economics, 2022, 30(4):48-54, 62. (in Chinese) [23] 林文秋, 马守涛, 崔艳红, 等. 铁催化甲烷无氧裂解制氢和碳纳米材料研究进展[J]. 化学与粘合, 2022, 44(6):522-527. LIN W Q, MA S T, CUI Y H, et al. Research progress in iron-catalyzed anaerobic cracking of methane for hydrogen production and carbon nanomaterials[J]. Chemistry and Adhesion, 2022, 44(6):522-527. (in Chinese) [24] 常宏岗. 天然气制氢技术及经济性分析[J]. 石油与天然气化工, 2021, 50(4):53-57. CHANG H G. Technical and economic analysis of hydrogenproduction from natural gas[J]. Chemical Engineering of Oil & Gas, 2021, 50(4):53-57. (in Chinese) [25] 曲源, 李彤宇, 李蕾蕾, 等. 一种烃类气体无碳排放制氢的方法:CN110342462A[P]. 2019-10-18. QU Y, LI T Y, LI L L, et al. A method of hydrogen production from hydrocarbon gas without carbon emission:CN110342462A[P]. 2019-10-18. (in Chinese) [26] 黄格省, 胡杰, 李锦山, 等. 我国煤制烯烃技术发展现状与趋势分析[J]. 化工进展, 2020, 39(10):3966-3974. HUANG G S, HU J, LI J S, et al. Development status and trend of coal-to-olefins technology[J]. Chemical Industry and Engineering Progress, 2020, 39(10):3966-3974. (in Chinese) [27] 刘治华, 李宇静. 中国丙烯市场回顾及"十四五"展望[J]. 现代化工, 2021, 41(8):16-18. LIU Z H, LI Y J. Review of China's propylene market and outlook for 2021-2025 period[J]. Modern Chemical Industry, 2021, 41(8):16-18. (in Chinese) [28] ANTONINI C, TREYER K, STREB A, et al. Hydrogen production from natural gas and biomethane with carbon capture and storage:A techno-environmental analysis[J]. Sustainable Energy & Fuels, 2020, 4(6):2967-2986. [29] IBRAHIM, SAEED K. Carbon nanotubes-properties and applications:A review[J]. Carbon Letters, 2013, 14(3):131-144. [30] THOSTENSON E T, REN Z F, CHOU T W. Advances in the science and technology of carbon nanotubes and theircomposites:A review[J]. Composites Science and Technology, 2001, 61(13):1899-1912. [31] 马云海, 曹东学. 碳纳米管规模化生产及应用展望[J]. 炼油技术与工程, 2022, 52(10):1-4, 46. MA Y H, CAO D X. Prospect of large-scale production and application of carbon nanotubes[J]. Petroleum Refinery Engineering, 2022, 52(10):1-4, 46. (in Chinese) [32] 张强, 黄佳琦, 赵梦强, 等. 碳纳米管的宏量制备及产业化[J]. 中国科学:化学, 2013, 43(6):641-666. ZHANG Q, HUANG J Q, ZHAO M Q, et al. Review on mass production and industrialization of carbon nanotubes[J]. Scientia Sinica (Chimica), 2013, 43(6):641-666. (in Chinese) [33] 张天乐, 董乾鹏, 白文娟, 等. 碳纳米管流态化技术的研究进展[J]. 化工新型材料, 2022, 50(9):47-52. ZHANG T L, DONG Q P, BAI W J, et al. Review of CNTs fluidization technology[J]. New Chemical Materials, 2022, 50(9):47-52. (in Chinese) [34] 崔凯. 甲烷催化裂解制氢研究现状[J]. 广州化工, 2022, 50(14):44-46. CUI K. Research status of hydrogen production from methane catalytic cracking[J]. Guangzhou Chemical Industry, 2022, 50(14):44-46. (in Chinese) [35] 何阳东, 常宏岗, 王丹, 等. 熔融金属法甲烷裂解制氢和碳材料研究进展[J/OL]. (2022-09-06)[2022-12-11]. https://doi.org/10.16085/j.issn.1000-6613.2022-0902. HE Y D, CHANG H G, WANG D, et al. Development of methane pyrolysis based on molten metal technology for coproduction of hydrogen and solid carbon products[J/OL]. (2022-09-06)[2022-12-11]. https://doi.org/10.16085/j.issn.1000-6613.2022-0902. (in Chinese) [36] SHEN W Q, WANG Y G, SHI X B, et al. Catalytic nonoxidative dehydrogenation of ethane over Fe-Ni and Ni catalysts supported on Mg(Al)O to produce hydrogen and easily purified carbon nanotubes[J]. Energy & Fuels, 2007, 21(6):3520-3529. [37] LAMBERT J M, AJAYAN P M, BERNIER P, et al. Improving conditions towards isolating single-shell carbon nanotubes[J]. Chemical Physics Letters, 1994, 226(3-4):364-371. [38] HUANG W, WANG Y, LUO G H, et al. 99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing[J]. Carbon, 2003, 41(13):2585-2590. [39] ZIMMERMAN J L, BRADLEY R K, HUFFMAN C B, et al. Gas-phase purification of single-wall carbon nanotubes[J]. Chemistry of Materials, 2000, 12(5):1361-1366. [40] CHIANG I W, BRINSON B E, HUANG A Y, et al. Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process)[J]. The Journal of Physical Chemistry B, 2001, 105(35):8297-8301. [41] LIU Y, LIU J C, LI T H, et al. Unravelling the enigma of nonoxidative conversion of methane on iron single-atom catalysts[J]. Angewandte Chemie International Edition, 2020, 59(42):18586-18590. [42] GUO X G, FANG G Z, LI G, et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen[J]. Science, 2014, 344(6184):616-619. [43] 赵辰阳. 安全、高效的基于钯膜的氢气分离技术[J]. 安全、健康和环境, 2021, 21(1):16-22. ZHAO C Y. Safe and efficient hydrogen separationtechnology based on palladium membrane[J]. Safety Health & Environment, 2021, 21(1):16-22. (in Chinese) [44] 张钢强, 葛庆, 孙朋涛, 等. 变压吸附氢回收率低的原因分析及解决方法[J]. 现代化工, 2022, 42(7):241-245, 250. ZHANG G Q, GE Q, SUN P T, et al. Causes for low recovery of hydrogen in PSA process and solutions[J]. Modern Chemical Industry, 2022, 42(7):241-245, 250. (in Chinese) [45] 魏昕, 丁黎明, 郦和生, 等. 膜法氢气分离技术及其在化工领域的应用进展[J]. 石油化工, 2021, 50(5):472-478. WEI X, DING L M, LI H S, et al. Hydrogen purification by membrane separation technology and its in chemical industrial application[J]. Petrochemical Technology, 2021, 50(5):472-478. (in Chinese) [46] 陶宇鹏. 不同氢气净化提纯技术在煤制氢中的经济性分析[J]. 四川化工, 2021, 24(4):13-16. TAO Y P. Economic analysis of different hydrogen purification technologies in coal hydrogen production[J].Sichuan Chemical Industry, 2021, 24(4):13-16. (in Chinese) [47] 吴德海, 朱宏伟, 张先锋, 等. 碳纳米管的制备与应用[J]. 清华大学学报(自然科学版), 2003, 43(5):577-585, 589. WU D H, ZHU H W, ZHANG X F, et al. Synthesis and application of carbon nanotubes[J]. Journal of Tsinghua University (Science and Technology), 2003, 43(5):577-585, 589. (in Chinese) [48] 赫晓东, 彭庆宇, 薛福华, 等. 纳米碳复合材料在航空领域应用研究进展[J]. 航空制造技术, 2022, 65(16):32-43. HE X D, PENG Q Y, XUE F H, et al. Research progress on applications of Nano-carbon composites in aviation field[J].Aeronautical Manufacturing Technology, 2022, 65(16):32-43. (in Chinese) [49] 张佰伦, 王凯, 李嘉辉, 等. 锂离子电池用纳米碳材料研究进展[J]. 材料导报, 2022, 36(20):21050286. ZHANG B L, WANG K, LI J H, et al. Progress in carbon nanomaterials for lithium-ion batteries[J]. Materials Reports, 2022, 36(20):21050286. (in Chinese) [50] 周镕卿, 刘旭锋, 廖宋娣, 等. 单壁碳纳米管导电添加剂对锂离子电池正极材料电化学性能的影响[J]. 厦门大学学报(自然科学版), 2023, 62(1):53-60. ZHOU R Q, LIU X F, LIAO S D, et al. Effect of single-walled carbon nanotubes as conductive additives on electrochemical performance of cathode materials of lithium-ion batteries[J]. Journal of Xiamen University (Natural Science), 2023, 62(1):53-60. (in Chinese) [51] 黄锦朝, 郭子霆, 肖青梅, 等. 石墨烯和碳纳米管二元复合导电剂对LiNi0.5Co0.2Mn0.3O2锂离子电池性能的影响[J/OL].[2022-12-11].http://kns.cnki.net/kcms/detail/36.1311.tf.20221019.1455.006.html. HUANG J C, GUO Z T, XIAO Q M, et al. Effect of graphene and carbon nanotube binary composite conductive agent on the performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion batteries[J/OL].[2022-12-11].http://kns.cnki.net/kcms/detail/36.1311.tf.20221019.1455.006.html. (in Chinese) [52] DASGUPTA K, JOSHI J B, BANERJEE S. Fluidized bed synthesis of carbon nanotubes:A review[J]. Chemical Engineering Journal, 2011, 171(3):841-869. [53] 陈君政, 吴锋, 陈人杰, 等. 不同管径多壁碳纳米管与硫含量对锂硫电池单质硫正极电化学性能的影响[J]. 新型炭材料, 2013, 28(6):428-434. CHEN J Z, WU F, CHEN R J, et al. Preparation of multi-wall carbon nanotube/S composites as cathodes for lithium/sulfur batteries[J]. New Carbon Materials, 2013, 28(6):428-434. (in Chinese) [54] 付小娟, 张海燕, 周纯, 等. 不同管径碳纳米管电化学储氢性能的比较[J]. 材料导报, 2005, 19(10):117-120, 138. FU X J, ZHANG H Y, ZHOU C, et al. The comparison of electrochemical hydrogen storage abilities of CNTs with different tube diameters[J]. Materials Reports, 2005, 19(10):117-120, 138. (in Chinese) [55] 张树辰, 张娜, 张锦. 碳纳米管可控制备的过去、现在和未来[J]. 物理化学学报, 2020, 36(1):1907021. ZHANG S C, ZHANG N, ZHANG J. Controlled synthesis of carbon nanotubes:Past, present and future[J]. Acta Physico-Chimica Sinica, 2020, 36(1):1907021. (in Chinese) [56] 周原冰, 杨方, 余潇潇, 等. 中国能源电力碳中和实现路径及实施关键问题[J]. 中国电力, 2022, 55(5):1-11. ZHOU Y B, YANG F, YU X X, et al. Realization pathways and key problems of carbon neutrality in China's energy and power system[J]. Electric Power, 2022, 55(5):1-11. (in Chinese) [57] GOLDMEER J. Power to gas:Hydrogen for power generation[R]. Boston:General Electric Company, 2019. [58] PATEL S. World's first integrated hydrogen power-to-powerdemonstration launched[R/OL]. (2020-06-04)[2023-02-22]. https://www.powermag.com/worlds-first-integrated-hydrogen-power-to-power-demonstration-launched/. [59] EMMA P. Hydrogen is having a moment, and power generation is leading the way[R/OL]. (2020-11-16)[2023-02-22].https://energycentral.com/news/hydrogen-having-moment-and-power-generation-leading-way. [60] 秦锋, 秦亚迪, 单彤文. 碳中和背景下氢燃料燃气轮机技术现状及发展前景[J]. 广东电力, 2021, 34(10):10-17. QIN F, QIN Y D, SHAN T W. Technology status and development prospects of hydrogen fuel gas turbine under the background of carbon neutral[J]. Guangdong Electric Power, 2021, 34(10):10-17. (in Chinese) [61] TODD D M, BATTISTA R A. Demonstrated applicability of hydrogen fuel for gas turbines[C]//Proceedings of Gasification 4:The Future. Noordwijk, Netherlands, 2000. [62] 李星国. 氢燃料燃气轮机与大规模氢能发电[J/OL].(2022-08-17)[2022-12-11]. http://kns.cnki.net/kcms/detail/31.1418.N.20220816.1002.002.html. LI X G. Hydrogen fuel gas turbine and large-scale hydrogen power generation[J/OL]. (2022-08-17)[2022-12-11]. http://kns.cnki.net/kcms/detail/31.1418.N.20220816.1002.002.html. (in Chinese) [63] GLOBALDATA. Hydrogen in power-thematic research[R/OL]. (2022-01-25)[2023-02-22]. https://www.globaldata.com/store/report/hydrogen-inpower-theme-analysis/. [64] 张语, 郑明辉, 井璐瑶, 等. 双碳背景下IGCC系统的发展趋势及研究方法[J]. 南方能源建设, 2022, 9(3):127-133. ZHANG Y, ZHENG M H, JING L Y, et al. Research on the trend of IGCC power generation system and optimization method under the background of carbon reduction[J]. Southern Energy Construction, 2022, 9(3):127-133. (in Chinese) [65] 白尊亮. 中美日典型IGCC电站对比研究[J]. 中外能源, 2021, 26(5):9-15. BAI Z L. Comparative study on typical IGCC power stations in China, USA and Japan[J]. Sino-Global Energy, 2021, 26(5):9-15. (in Chinese) [66] CORMOS A M, CORMO C C. Techno-economic assessment of combined hydrogen & power co-generation with carbon capture:The case of coal gasification[J]. Applied Thermal Engineering, 2019, 147:29-39. [67] SCHUPAK A. Hurray for hydrogen:This new ohio power plant successfully used hydrogen to generate electricity[R/OL].(2022-04-21)[2023-02-22]. https://www.ge.com/news/reports/hurray-for-hydrogen-this-new-ohio-power-plant-successfully-used-hydrogen-to-generate. [68] KEIPI T, TOLVANEN H, KONTTINEN J. Economic analysis of hydrogen production by methane thermal decomposition:Comparison to competing technologies[J]. Energy Conversion and Management, 2018, 159:264-273. [69] AL-QAHTANI A, PARKINSON B, HELLGARDT K, et al. Uncovering the true cost of hydrogen production routes using life cycle monetisation[J]. Applied Energy, 2021, 281:115958. [70] LI Y F, YU H S, JIANG X H, et al. Techno-economic analysis for hydrogen-burning power plant with onsite hydrogen production unit based on methane catalytic decomposition[J]. Energy Conversion and Management, 2023, 277:116674. [71] KEIPI T, HANKALIN V, NUMMELIN J, et al. Techno-economic analysis of four concepts for thermal decomposition of methane:Reduction of CO2 emissions in natural gas combustion[J]. Energy Conversion and Management, 2016, 110:1-12. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|