2. 清华大学 汽车安全与节能国家重点实验室, 北京 100084
2. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
近年来, 汽车保有量的增加给道路交通带来了严重的负担, 从而引发了一系列能源消耗和交通安全问题[1]。
队列控制指将同一车道上的车辆进行编队, 根据相邻车辆信息自动调整该车辆的纵向运动状态, 最终达到一致的行驶速度和期望的构型[2]。队列控制可以通过减小车间距的方式提高道路通行效率并减少耗油量[3], 同时高度的智能化行驶也可以避免人为因素带来的车祸事故, 进而提高交通安全[4-6]。
国内外科研机构对车辆纵向队列控制进行了大量的研究, 如美国PATH项目[7]、欧洲SARTRE项目以及日本Energy-ITS项目等[8]。文[9]提出一种基于机器学习的自动驾驶汽车协作式自适应巡航控制器设计方法, 使用强化学习方法来开发用于纵向跟随的控制器。考虑具有非线性动力学的车辆队列控制问题, 文[10]提出了分布式滚动时域控制算法, 并推导得到了保证系统渐近稳定和队列稳定性的充分条件。文[11]提出了一种具有单向拓扑的非线性动力学的异构车辆队列分布式模型预测控制算法, 并给出保证其渐近稳定性的充分条件。
车辆队列利用无线通信等技术将队列中车辆联系起来, 实现实时的信息共享, 扩展队列对环境的感知能力, 从而提高队列的控制效果。文[12]对比了相同车头时距策略下的前车跟随式和领航-前车跟随式通信拓扑, 指出领航-前车跟随式通信拓扑可以带来更好的队列稳定性。
然而, 通过无线通信实现车辆间信息共享虽然能够有效增强车辆队列控制系统的稳定性与鲁棒性, 但也不可避免地带来了通信延迟等网络缺陷, 进而影响队列控制系统的性能[13]。文[14]提出了一种分布式队列控制方法, 在存在异构时变延迟的情况下实现车辆队列控制。在考虑通信网络延迟的情况下, 文[15]建立了车辆纵向队列模型, 并设计了保性能控制器以保证队列的稳定性。文[16]提出了一种具有均匀通信延迟的异构车辆队列鲁棒控制方法, 保证了参数不确定性和匀质通信延迟影响下的队列稳定性, 但是其求解控制器增益的线性矩阵不等式是高维的, 矩阵维度随队列长度增大而增大。
在车辆特性、行驶环境的影响下,车辆动力学模型不可避免会存在不确定性, 同时通信延迟也是使用无线通信时不可忽略的因素, 这些因素会明显降低队列控制性能。目前的研究方法尚不能有效解决动态不确定性和通信延迟下的队列控制问题。本文对存在通信延迟、动态不确定性和外部干扰的智能电动汽车队列控制进行了研究, 提出了一种智能电动汽车分布式自适应鲁棒控制方法。该方法通过使用Lyapunov稳定性理论, 推导出保证队列具有鲁棒性的矩阵不等式条件;使用特征值分解的解耦方法将高维的矩阵不等式转化为低维的矩阵不等式, 其矩阵维度不随队列长度改变;为了提高队列的控制性能, 在鲁棒控制器上加入自适应项, 构建通信延迟下智能电动汽车队列自适应γ-次优反馈控制器,从而有效提升智能电动汽车队列行驶性能。
1 智能电动汽车队列系统建模 1.1 智能电动汽车队列系统车辆模型如图 1所示, 队列由N+1辆车组成, 其中包含1辆领航车辆和N辆跟随车辆, 领航车辆编号为0, 跟随车辆编号为1, …, N。车辆间采用固定间距间隔策略。队列控制的目标是使车辆保持与领航车辆一致的行驶速度, 同时与前车保持恒定的期望间距, 从而使队列保持恒定的期望队形, 即:
$ \begin{gathered} \left\{\begin{array}{l} \lim \limits_{t \rightarrow \infty}\left[v_{i}(t)-v_{0}(t)\right]=0, \\ \lim \limits_{t \rightarrow \infty}\left[p_{i-1}(t)-p_{i}(t)-L_{i}-d_{i, i-1}\right]=0, \end{array}\right. \\ i \in[1,2, \ldots, N] . \end{gathered} $ | (1) |
![]() |
图 1 队列结构图 |
其中: pi和vi分别表示车辆i的位置和速度, Li表示车辆i的长度, δi=pi-1-pi-Li表示相邻车辆间的实际车间距, di, i-1表示相邻车辆间的期望车间距。
对队列中智能电动汽车纵向运动作如下假设: 1) 忽略轮胎纵向滑移; 2) 车体是刚性和对称的; 3) 车辆动力系统的输入与输出特性为一阶惯性环节。基于如上假设, 可以得到第i辆智能电动汽车的非线性纵向动力学模型[17]:
$ \dot{p}_{i}=v_{i}, $ | (2) |
$ m_{i} \dot{v}_{i}=\mu_{i} \frac{T_{i}}{R_{i}}-c_{\mathrm{f} i} v_{i}^{2}-m_{i} g_{i} f_{i}, $ | (3) |
$ \tau_{i} \dot{T}_{i}+T_{i}=T_{i \mathrm{e}}. $ | (4) |
其中:Tie为第i辆车的期望驱动力矩, Ti为第i辆车的实际驱动力矩, τi为第i辆车的一阶惯性环节的时间常数, cfi为第i辆车的空气阻力系数, fi为第i辆车摩擦阻力系数, gi为第i辆车的重力加速度, μi为第i辆车动力传动系统的机械效率, Ri为第i辆车的轮胎半径。
采用逆模型补偿技术[18]消除车辆纵向动力学中的非线性项, 设计期望驱动力矩Tie,
$ T_{i \mathrm{e}}=\frac{R_{i}}{\mu}\left(c_{\mathrm{f}i} v_{i}^{2}+m_{i} g f_{i}+2 \tau_{i} c_{\mathrm{f}i} v_{i} \dot{v}_{i}+m_{i} a_{i \mathrm{e}}\right). $ | (5) |
其中aie为第i辆车的期望加速度。以期望加速度作为第i辆车的控制输入ui, 结合式(2)—(5), 可得第i辆车的线性纵向动力学模型,
$ \dot{a}_{i}=-\frac{1}{\tau_{i}} a_{i}+\frac{1}{\tau_{i}} u_{i} . $ | (6) |
其中ai为第i辆车的加速度。
由于环境等因素的影响, 智能电动汽车的车辆特性通常存在参数不确定性, 因此纵向动力学模型(6)可以写为
$ \dot{a}_{i}=-\frac{1}{\tau_{i}+\Delta \tau_{i}} a_{i}+\frac{1}{\tau_{i}+\Delta \tau_{i}} u_{i} . $ | (7) |
定义
$ \dot{\boldsymbol{x}}_{i}(t)=\left(\boldsymbol{A}_{i}+\Delta \boldsymbol{A}_{i}\right) \boldsymbol{x}_{i}(t)+\left(\boldsymbol{B}_{i}+\Delta \boldsymbol{B}_{i}\right) u_{i}(t) . $ | (8) |
其中:
假设1 模型(8)的参数不确定性是未知有界的,具体形式为
$ \left[\begin{array}{ll} \Delta \boldsymbol{A}_{i} & \Delta \boldsymbol{B}_{i} \end{array}\right]=\boldsymbol{D} \boldsymbol{F}_{i}(t)\left[\begin{array}{ll} \boldsymbol{E}_{1} & \boldsymbol{E}_{2} \end{array}\right]. $ |
其中: D、E1、E2是适当维数的已知常数矩阵, 描述了不确定性的结构信息;Fi(t), i=1,…,N,是满足
$ \boldsymbol{F}_{i}^{\mathrm{T}}(t) \boldsymbol{F}_{i}(t) \leqslant \boldsymbol{I} $ |
的时变未知矩阵。
假设2 ΔBi是未知有界的, 满足
$ \Delta \boldsymbol{B}_{i}=\boldsymbol{B}_{i} \boldsymbol{\theta}_{i}(t) \boldsymbol{\varXi} \leqslant \boldsymbol{B}_{i} \rho<\boldsymbol{B}_{i}. $ |
其中:θi(t)是未知矩阵,Ξ是适当维数的已知常数矩阵, ρ是已知非负常数。
1.2 智能电动汽车队列系统通信拓扑模型本文采用图论模型来描述队列中车辆之间的通信拓扑结构, 即将通信拓扑建模为有向图[19]。有向图的邻接矩阵定义为M=(mij)∈ℝN×N。其中:mij=1表示车辆i能够获取到车辆j的信息, mij=0表示车辆i不能获取到车辆j的信息。在邻接矩阵的基础上, 定义有向图
基于第1节建立的含有参数不确定性的汽车纵向动力学模型, 本节考虑无线通信存在的延迟对队列控制系统的影响, 设计了一种自适应鲁棒状态反馈控制器。基于Lyapunov稳定性理论, 对智能电动汽车队列控制系统的鲁棒性[20-21]进行分析, 给出控制器增益的求解条件。
本文假设队列中车辆是同质的, 即τi=τ、ζi=ζ。为了实现通信延迟下的智能电动车队列控制,本文设计自适应状态反馈控制器为
$ \begin{gathered} u_{i}(t)=\boldsymbol{k} \sum\limits_{j=1}^{N} l_{i j}\left(\boldsymbol{x}_{j}(t)-\boldsymbol{x}_{i}(t)-\boldsymbol{D}_{i, j}\right)+ \\ \boldsymbol{k} r_{i}\left(\boldsymbol{x}_{0}\left(t-\eta_{i}\right)-\boldsymbol{x}_{i}\left(t-\eta_{i}\right)-\boldsymbol{D}_{i, 0}\right)+k_{1}(t). \end{gathered} $ | (9) |
其中:k=[k1 k2 k3]为待设计的常数控制器增益,ηi表示车辆i的通信延迟,Di, 0=[di, 0 0 0]T。将自适应增益k1(t)设计为
$ k_{1}(t)=-\boldsymbol{B}^{\mathrm{T}} \boldsymbol{P} \tilde{\boldsymbol{x}}(t) k_{2}(t). $ | (10) |
其中k2(t)由式(11)的自适应律自动调节,
$ \dot{k}_{2}(t)=-(1+\rho)\left\|\tilde{\boldsymbol{x}}^{\mathrm{T}}(t) \boldsymbol{P} \boldsymbol{B}\right\|{ }_{2} \text {. } $ | (11) |
车辆i相对于领航车辆的跟踪误差可以表示为
$ \widetilde{\boldsymbol{x}}_{i}(t)=\boldsymbol{x}_{0}(t)-\boldsymbol{x}_{i}(t)-\boldsymbol{D}_{i, 0}. $ | (12) |
以
$ \begin{gathered} \dot{\tilde{\boldsymbol{x}}}_{i}(t)=(\boldsymbol{A}+\Delta \boldsymbol{A}) \tilde{\boldsymbol{x}}_{i}(t)-(\boldsymbol{B}+\Delta \boldsymbol{B}) u_{i}(t)+ \\ (\boldsymbol{B}+\Delta \boldsymbol{B}) u_{0}(t). \end{gathered} $ | (13) |
把控制器(9)代入式(13)得
$ \begin{gathered} \dot{\tilde{\boldsymbol{x}}}_{i}(t)=(\boldsymbol{A}+\Delta \boldsymbol{A}) \tilde{\boldsymbol{x}}_{i}(t)- \\ (\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{k} \sum\limits_{j=1}^{N} l_{i j}\left(\widetilde{\boldsymbol{x}}_{j}(t)-\widetilde{\boldsymbol{x}}_{i}(t)\right)- \\ (\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{k} r_{i} \widetilde{\boldsymbol{x}}_{i}\left(t-\eta_{i}\right)+(\boldsymbol{B}+\Delta \boldsymbol{B}) k_{1}(t)+ \\ (\boldsymbol{B}+\Delta \boldsymbol{B}) u_{0}(t). \end{gathered} $ | (14) |
把记u0(t)为施加在领航车辆上的干扰ωi(t),定义
$ \begin{gathered} \dot{\vec{x}}(t)=\left[\boldsymbol{I}_{N} \otimes(\boldsymbol{A}+\Delta \boldsymbol{A})\right] \tilde{\boldsymbol{x}}(t)- \\ {[\boldsymbol{L} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{k}] \widetilde{\boldsymbol{x}}(t)-}\\ {[\boldsymbol{R} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{k}] \widetilde{\boldsymbol{x}}(t-\eta)+\boldsymbol{I}_{N} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) k_{1}(t)+} \\ {\left[\boldsymbol{I}_{N} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B})\right] \boldsymbol{\omega}(t)}. \end{gathered} $ | (15) |
其中:η=η1...ηNT,IN为N×N的单位矩阵,表示矩阵的Kronecker积。输出量
队列中的车辆通过通信拓扑进行信息交互, 每一种通信拓扑结构对应着唯一的Laplace矩阵L和邻接矩阵R。
为了便于后面的分析和讨论, 先介绍如下引理。
引理1[22] 给定适当维数的矩阵H、M、W,其中HT=H,ZTZ≤I,则
$ \boldsymbol{H}+\boldsymbol{M} \boldsymbol{Z} \boldsymbol{W}+\boldsymbol{M}^{\mathrm{T}} \boldsymbol{Z}^{\mathrm{T}} \boldsymbol{W}^{\mathrm{T}}<{\bf{0}} $ |
成立, 当且仅当存在一个ε>0使得
$ \boldsymbol{H}+\varepsilon \boldsymbol{M} \boldsymbol{M}^{\mathrm{T}}+\varepsilon^{-1} \boldsymbol{W}^{\mathrm{T}} \boldsymbol{W}<{\bf{0}} $ |
成立。
定理1 对系统(13),给定γ>0,若存在对称正定矩阵P和S,使得
$ \left[\begin{array}{ccc} \boldsymbol{\varphi}_{1} & \boldsymbol{\varphi}_{2} & \boldsymbol{\varphi}_{3} \\ * & -\boldsymbol{I}_{N} \otimes \gamma{\boldsymbol{I}} & {\bf{0}} \\ * & * & -\left(\boldsymbol{I}_{N} \otimes \boldsymbol{S}\right) \end{array}\right]<{\bf{0}} $ | (16) |
成立,其中
$ \begin{gathered} \boldsymbol{\varphi}_{1}=\operatorname{He}\left\{( \boldsymbol { I } _ { N } \otimes \boldsymbol { P } ) \left[\boldsymbol{I}_{N} \otimes(\boldsymbol{A}+\Delta \boldsymbol{A})-\right.\right., \\ \boldsymbol{L} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{k}]\}+\boldsymbol{k}^{\mathrm{T}}\left(\boldsymbol{I}_{N} \otimes \boldsymbol{S}\right) \boldsymbol{k}+\boldsymbol{I}_{N} \otimes \gamma^{-1} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{C}, \end{gathered} $ |
$ \boldsymbol{\varphi}_{2}=\left(\boldsymbol{I}_{N} \otimes \boldsymbol{P}\right)\left[\boldsymbol{I}_{N} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B})\right], $ |
$ \boldsymbol{\varphi}_{3}=-\left(\boldsymbol{I}_{N} \otimes \boldsymbol{P}\right)[\boldsymbol{R} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B})], $ |
则存在控制器(9),使得闭环系统(15)具有H∞性能γ,即对于给定的标量γ>0,在零初始条件下,从ω(t)到y(t)的闭环传递函数的H∞范数不超过γ:
$ \mid \boldsymbol{y}\left\|_{2} \leqslant \gamma\right\| \boldsymbol{\omega} \|_{2}, \forall \boldsymbol{\omega} \in L_{2}[0, \infty). $ | (17) |
证明:选取Lyapunov函数为
$ \begin{gathered} \boldsymbol{V}(t)=\widetilde{\boldsymbol{x}}^{\mathrm{T}}(t)\left(\boldsymbol{I}_{N} \otimes \boldsymbol{P}\right) \widetilde{\boldsymbol{x}}(t)+ \\ \int_{t-\eta}^{t} \tilde{\boldsymbol{x}}^{\mathrm{T}}(s) \boldsymbol{k}^{\mathrm{T}}\left(\boldsymbol{I}_{N} \otimes \boldsymbol{S}\right) \boldsymbol{k} \tilde{\boldsymbol{x}}(s) \mathrm{d} s+ \\ \boldsymbol{I}_{N} \otimes k_{2}(t) k_{2}(t) . \end{gathered} $ | (18) |
对任意非零的扰动ω(t)∈L2[0,∞),利用Lyapunov函数(18)和零初始条件,可以得到
$ \begin{gathered} \int_{0}^{d}\left(\gamma^{-1} \boldsymbol{y}^{\mathrm{T}} \boldsymbol{y}-\gamma \boldsymbol{\omega}^{\mathrm{T}} \boldsymbol{\omega}+\dot{\boldsymbol{V}}(t)\right) \mathrm{d} t-\boldsymbol{V}(t) \leqslant \\ \int_{0}^{d}\left(\gamma^{-1} \boldsymbol{y}^{\mathrm{T}} \boldsymbol{y}-\gamma \boldsymbol{\omega}^{\mathrm{T}} \boldsymbol{\omega}+\dot{\boldsymbol{V}}(t) \mathrm{d} t\right.. \end{gathered} $ |
进而对上式进行展开得
$ \begin{array}{c} \dot{\boldsymbol{V}}(t)+\gamma^{-1} \boldsymbol{y}^{\mathrm{T}}(t) \boldsymbol{y}(t)-\gamma \boldsymbol{\omega}^{\mathrm{T}}(t) \boldsymbol{\omega}(t)=\\ \left\{\left[\boldsymbol{I}_{N} \otimes(\boldsymbol{A}+\Delta \boldsymbol{A})\right] \tilde{\boldsymbol{x}}(t)-[\boldsymbol{L} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{k}] \tilde{\boldsymbol{x}}(t)-\right. \\ {[\boldsymbol{R} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{k}] \tilde{\boldsymbol{x}}(t-\eta)-\left[\boldsymbol{I}_{N} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B})\right] k_{1}(t)+} \\ \left.\left[\boldsymbol{I}_{N} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{\omega}(t)\right]\right\}^{\mathrm{T}}\left(\boldsymbol{I}_{N} \otimes \boldsymbol{P}\right) \tilde{\boldsymbol{x}}(t)+ \\ \tilde{\boldsymbol{x}}^{\mathrm{T}}(t)\left(\boldsymbol{I}_{N} \otimes \boldsymbol{P}\right)\left\{\left[\boldsymbol{I}_{N} \otimes(\boldsymbol{A}+\Delta \boldsymbol{A})\right] \tilde{\boldsymbol{x}}(t)-\right. \\ {[\boldsymbol{L} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{k}] \tilde{\boldsymbol{x}}(t)-[\boldsymbol{R} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{k}] \widetilde{\boldsymbol{x}}(t-\eta)-} \\ \left.\left[\boldsymbol{I}_{N} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B})\right] k_{1}(t)+\left[\boldsymbol{I}_{N} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{\omega}(t)\right]\right\}+ \\ \widetilde{\boldsymbol{x}}^{\mathrm{T}}(t) \boldsymbol{k}^{\mathrm{T}}\left(\boldsymbol{I}_{N} \otimes \boldsymbol{S}\right) \boldsymbol{k} \tilde{\boldsymbol{x}}(t)- \\ \tilde{\boldsymbol{x}}^{\mathrm{T}}(t-\eta) \boldsymbol{k}^{\mathrm{T}}\left(\boldsymbol{I}_{N} \otimes \boldsymbol{S}\right) \boldsymbol{k} \tilde{\boldsymbol{x}}(t-\eta)+ \\ \boldsymbol{I}_{N} \otimes\left[2 k_{2}(t) \dot{k}_{2}(t)\right]+\gamma^{-1} \boldsymbol{y}^{\mathrm{T}}(t) \boldsymbol{y}(t)-\gamma \boldsymbol{\omega}^{\mathrm{T}}(t) \boldsymbol{\omega}(t). \end{array} $ | (19) |
把自适应增益(10)和自适应律(11)代入式(19),可以对其中部分项进行展开,
$ \begin{gathered} \left\{-\left[\boldsymbol{I}_{N} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) k_{1}(t)\right]\right\}^{\mathrm{T}}\left(\boldsymbol{I}_{N} \otimes \boldsymbol{P}\right) \tilde{\boldsymbol{x}}(t)+ \\ \tilde{\boldsymbol{x}}^{\mathrm{T}}(t)\left(\boldsymbol{I}_{N} \otimes \boldsymbol{P}\right)\left\{-\left[\boldsymbol{I}_{N} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) k_{1}(t)\right]\right\}+ \\ \boldsymbol{I}_{N} \otimes\left[2 k_{2}(t) \dot{k}_{2}(t)\right]= \\ \left\{\left[\boldsymbol{I}_{N} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{B}^{\mathrm{T}} \boldsymbol{P} \tilde{\boldsymbol{x}}(t) k_{2}(t)\right]\right\}^{\mathrm{T}}\left(\boldsymbol{I}_{N} \otimes \boldsymbol{P}\right) \tilde{\boldsymbol{x}}(t)+ \\ \widetilde{\boldsymbol{x}}^{\mathrm{T}}(t)\left(\boldsymbol{I}_{N} \otimes \boldsymbol{P}\right)\left\{\left[\boldsymbol{I}_{N} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{B}^{\mathrm{T}} \boldsymbol{P} \tilde{\boldsymbol{x}}(t) k_{2}(t)\right]\right\}- \\ \boldsymbol{I}_{N} \otimes\left[2 k_{2}(t)(1+\rho) \widetilde{\boldsymbol{x}}^{\mathrm{T}}(t) \boldsymbol{P} \boldsymbol{B} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{P} \tilde{\boldsymbol{x}}(t)\right] . \end{gathered} $ | (20) |
由假设2),可以将式(20)化为
$ \begin{gathered} \left\{\left[\boldsymbol{I}_{N} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{B}^{\mathrm{T}} \boldsymbol{P} \tilde{\boldsymbol{x}}(t) k_{2}(t)\right]\right\}^{\mathrm{T}}\left(\boldsymbol{I}_{N} \otimes \boldsymbol{P}\right) \widetilde{\boldsymbol{x}}(t)+ \\ \widetilde{\boldsymbol{x}}^{\mathrm{T}}(t)\left(\boldsymbol{I}_{N} \otimes \boldsymbol{P}\right)\left\{\left[\boldsymbol{I}_{N} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{B}^{\mathrm{T}} \boldsymbol{P} \tilde{\boldsymbol{x}}(t) k_{2}(t)\right]\right\}- \\ \boldsymbol{I}_{N} \otimes\left[2 k_{2}(t)(1+\rho) \widetilde{\boldsymbol{x}}^{\mathrm{T}}(t) \boldsymbol{P} \boldsymbol{B} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{P} \tilde{\boldsymbol{x}}(t)\right] \leqslant \\ \left\{\left[\boldsymbol{I}_{N} \otimes(\boldsymbol{B}+\boldsymbol{B} \rho) \boldsymbol{B}^{\mathrm{T}} \boldsymbol{P} \tilde{\boldsymbol{x}}(t) k_{2}(t)\right]\right\}^{\mathrm{T}}\left(\boldsymbol{I}_{N} \otimes \boldsymbol{P}\right) \widetilde{\boldsymbol{x}}(t)+ \\ \widetilde{\boldsymbol{x}}^{\mathrm{T}}(t)\left(\boldsymbol{I}_{N} \otimes \boldsymbol{P}\right)\left\{\left[\boldsymbol{I}_{N} \otimes(\boldsymbol{B}+\boldsymbol{B} \rho) \boldsymbol{B}^{\mathrm{T}} \boldsymbol{P} \tilde{\boldsymbol{x}}(t) k_{2}(t)\right]\right\}- \\ \boldsymbol{I}_{N} \otimes\left[2 k_{2}(t)(1+\rho) \widetilde{\boldsymbol{x}}^{\mathrm{T}}(t) \boldsymbol{P} \boldsymbol{B} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{P} \tilde{\boldsymbol{x}}(t)\right]={\bf{0}} . \end{gathered} $ | (21) |
将式(21)代入式(19)可以得到
$ \begin{gathered} \dot{\boldsymbol{V}}(t)+\gamma^{-1} \boldsymbol{y}^{\mathrm{T}}(t) \boldsymbol{y}(t)-\gamma \boldsymbol{\omega}^{\mathrm{T}}(t) \boldsymbol{\omega}(t) \leqslant \\ \left\{\left[\boldsymbol{I}_{\mathrm{N}} \otimes(\boldsymbol{A}+\Delta \boldsymbol{A})\right] \tilde{\boldsymbol{x}}(t)-[\boldsymbol{L} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{k}] \widetilde{\boldsymbol{x}}(t)-\right. \\ {[\boldsymbol{R} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{k}] \widetilde{\boldsymbol{x}}(t-\eta)+} \\ \left.\left[\boldsymbol{I}_{N} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{\omega}(t)\right]\right\}^{\mathrm{T}}\left(\boldsymbol{I}_{N} \otimes \boldsymbol{P}\right) \tilde{\boldsymbol{x}}(t)+ \\ \widetilde{\boldsymbol{x}}^{\mathrm{T}}(t)\left(\boldsymbol{I}_{N} \otimes \boldsymbol{P}\right)\left\{\left[\boldsymbol{I}_{N} \otimes(\boldsymbol{A}+\Delta \boldsymbol{A})\right] \tilde{\boldsymbol{x}}(t)-\right. \\ {[\boldsymbol{L} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{k}] \widetilde{\boldsymbol{x}}(t)-[\boldsymbol{R} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{k}] \widetilde{\boldsymbol{x}}(t-\eta)+} \\ \left.\left[\boldsymbol{I}_{N} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{\omega}(t)\right]\right\}+\widetilde{\boldsymbol{x}}^{\mathrm{T}}(t) \boldsymbol{k}^{\mathrm{T}}\left(\boldsymbol{I}_{N} \otimes \boldsymbol{S}\right) \boldsymbol{k} \widetilde{\boldsymbol{x}}(t)- \\ \widetilde{\boldsymbol{x}}^{\mathrm{T}}(t-\eta) \boldsymbol{k}^{\mathrm{T}}\left(\boldsymbol{I}_{N} \otimes \boldsymbol{S}\right) \boldsymbol{k} \widetilde{\boldsymbol{x}}(t-\eta)+ \\ \gamma^{-1} \boldsymbol{y}^{\mathrm{T}}(t) \boldsymbol{y}(t)-\gamma \boldsymbol{\omega}^{\mathrm{T}}(t) \boldsymbol{\omega}(t)=\\ {\left[\begin{array}{c} \tilde{\boldsymbol{x}}(t) \\ \boldsymbol{\omega}(t) \\ \boldsymbol{k} \widetilde{\boldsymbol{x}}(t-\eta) \end{array}\right]^{\mathrm{T}}\left[\begin{array}{ccc} \boldsymbol{\varphi}_{1} & \boldsymbol{\varphi}_{2} & \boldsymbol{\varphi}_{3} \\ * & -\boldsymbol{I}_{N} \otimes \gamma{\boldsymbol{I}} & {\bf{0}} \\ * & * & -\left(\boldsymbol{I}_{N} \otimes \boldsymbol{S}\right) \end{array}\right] \cdot} \\ {\left[\begin{array}{c} \tilde{\boldsymbol{x}}(t) \\ \boldsymbol{\omega}(t) \\ \boldsymbol{k} \tilde{\boldsymbol{x}}(t-\eta) \end{array}\right] .} \end{gathered} $ | (22) |
当式(16)成立时,有
$ \int_{0}^{d}\left(\gamma^{-1} \boldsymbol{y}^{\mathrm{T}} \boldsymbol{y}-\gamma \boldsymbol{\omega}^{\mathrm{T}} \boldsymbol{\omega}+\dot{\boldsymbol{V}}(t)\right) \mathrm{d} t<{\bf{0}}. $ | (23) |
式(23)等价于
$ \int_{0}^{d} \boldsymbol{y}^{\mathrm{T}} \boldsymbol{y} \mathrm{d} t<\gamma^{2} \int_{0}^{d} \boldsymbol{\omega}^{\mathrm{T}} \boldsymbol{\omega} \mathrm{d} t<\gamma^{2} \int_{0}^{\infty} \boldsymbol{\omega}^{\mathrm{T}} \boldsymbol{\omega} \mathrm{d} t . $ | (24) |
式(24)对所有的t>0均成立。因此,条件(17)成立,定理1得证。控制器(9)是系统(13)的一个γ-次优自适应状态反馈H∞控制器。
不等式(16)包含了参数不确定矩阵,要检验其是否对所有允许的不确定矩阵成立仍然困难。同时,式(16)是高维的,其维度随着队列车辆的增多而增大,计算较为复杂。此外, 式(16)是非线性的,接下来应用引理1和特征值分解方法将定理1的条件转化为一个等价的线性矩阵不等式的可行性问题,其线性矩阵不等式是低维的,与队列车辆数无关,从而可以求出H∞控制器。
定理2 对系统(13),给定γ>0,若存在常数ε1>0,ε2>0,ε3>0,对称正定矩阵X、T,矩阵Y,对L的所有特征值λi,i=1,…,q+r,均使得式(25)和(26)成立,
$ \left[\begin{array}{cccccccc} \boldsymbol{\varphi}_{4} & \boldsymbol{X} \boldsymbol{C}^{\mathrm{T}} & \boldsymbol{B} & {\bf{0}} & {\bf{0}} & \left(\boldsymbol{E}_{1} \boldsymbol{X}\right)^{\mathrm{T}} & \left(\boldsymbol{E}_{2} \boldsymbol{Y}\right)^{\mathrm{T}} & \boldsymbol{Y}^{\mathrm{T}} \\ * & -\gamma \boldsymbol{I} & {\bf{0}} & {\bf{0}} & {\bf{0}} & {\bf{0}} & {\bf{0}} & {\bf{0}} \\ * & * & -\gamma{\boldsymbol{I}} & {\bf{0}} & {\bf{0}} & \boldsymbol{E}_{2}^{\mathrm{T}} & {\bf{0}} & {\bf{0}} \\ * & * & * & -\boldsymbol{T} & \boldsymbol{T} & \left(\boldsymbol{E}_{2} \boldsymbol{T}\right)^{\mathrm{T}} & {\bf{0}} & {\bf{0}} \\ * & * & * & * & -\varepsilon_{3} \boldsymbol{I} & {\bf{0}} & {\bf{0}} & {\bf{0}} \\ * & * & * & * & * & -\varepsilon_{1} \boldsymbol{I} & {\bf{0}} & {\bf{0}} \\ * & * & * & * & * & * & -\varepsilon_{2} \boldsymbol{I} & {\bf{0}} \\ * & * & * & * & * & * & * & -\boldsymbol{T} \end{array}\right]<{\bf{0}}, $ | (25) |
$ \left[\begin{array}{c} \boldsymbol{\varphi}_{5} & \boldsymbol{I}_{2} \otimes\left(\boldsymbol{X} \boldsymbol{C}^{\mathrm{T}}\right) & \boldsymbol{I}_{2} \otimes \boldsymbol{B} & {\bf{0}} & {\bf{0}} & \boldsymbol{I}_{2} \otimes\left(\boldsymbol{E}_{1} \boldsymbol{X}\right)^{\mathrm{T}} & \boldsymbol{I}_{2} \otimes\left(\boldsymbol{E}_{2} \boldsymbol{Y}\right)^{\mathrm{T}} & \boldsymbol{I}_{2} \otimes \boldsymbol{Y}^{\mathrm{T}}\\ * & -\boldsymbol{I}_{2} \otimes(\gamma \boldsymbol{I}) & {\bf{0}} & {\bf{0}} & {\bf{0}} & {\bf{0}} & {\bf{0}} & {\bf{0}}\\ * & * & -\boldsymbol{I}_{2} \otimes(\gamma \boldsymbol{I}) & {\bf{0}} & {\bf{0}} & \boldsymbol{I}_{2} \otimes \boldsymbol{E}_{2}^{\mathrm{T}} & {\bf{0}} & {\bf{0}}\\ * & * & * & -\boldsymbol{I}_{2} \otimes \boldsymbol{T} & \boldsymbol{I}_{2} \otimes \boldsymbol{T} & \boldsymbol{I}_{2} \otimes\left(\boldsymbol{E}_{2} \boldsymbol{T}\right)^{\mathrm{T}} & {\bf{0}} & {\bf{0}} \\ * & * & * & * & -\boldsymbol{I}_{2} \otimes\left(\varepsilon_{3} \boldsymbol{I}\right) & {\bf{0}} & {\bf{0}} & {\bf{0}} \\ * & * & * & * & * & -\boldsymbol{I}_{2} \otimes\left(\varepsilon_{1} \boldsymbol{I}\right) & {\bf{0}} & {\bf{0}} \\ * & * & * & * & * & * & -\boldsymbol{I}_{2} \otimes\left(\varepsilon_{2} \boldsymbol{I}\right) & {\bf{0}} \\ * & * & * & * & * & * & * & \boldsymbol{I}_{2} \otimes \boldsymbol{T} \end{array}\right]<{\bf{0}}, $ | (26) |
其中
$ \boldsymbol{\varphi}_{4}=\operatorname{He}\left(\boldsymbol{A} \boldsymbol{X}-\lambda_{i} \boldsymbol{B} \boldsymbol{Y}\right)+\varepsilon_{1} \boldsymbol{D} \boldsymbol{D}^{\mathrm{T}}+\varepsilon_{2} \lambda_{i}^{2} \boldsymbol{D} \boldsymbol{D}^{\mathrm{T}}+\varepsilon_{3} \boldsymbol{B} \boldsymbol{B}^{\mathrm{T}}, $ |
$ \begin{gathered} \boldsymbol{\varphi}_{5}=\operatorname{He}\left\{\boldsymbol{I}_{2} \otimes(\boldsymbol{A} \boldsymbol{X})-\left[\begin{array}{cc} \alpha_{i} & \beta_{i} \\ -\beta_{i} & \alpha_{i} \end{array}\right] \otimes(\boldsymbol{B} \boldsymbol{Y})\right\}+ \\ \boldsymbol{I}_{2} \otimes\left(\varepsilon_{1} \boldsymbol{D} \boldsymbol{D}^{\mathrm{T}}\right)+\left[\begin{array}{cc} \alpha_{i}^{2}-\beta_{i}^{2} & 2 \alpha_{i} \beta_{i} \\ -2 \alpha_{i} \beta_{i} & \alpha_{i}^{2}-\beta_{i}^{2} \end{array}\right] \otimes\left(\varepsilon_{2} \boldsymbol{D} \boldsymbol{D}^{\mathrm{T}}\right)+ \\ \boldsymbol{I}_{2} \otimes\left(\varepsilon_{3} \boldsymbol{B} \boldsymbol{B}^{\mathrm{T}}\right), \end{gathered} $ |
则存在一个具有自适应增益(10)和自适应律(11)的自适应γ-次优状态反馈H∞控制器(9),其控制器增益k=YX-1。
证明:使用特征值分解方法[23],存在一个N×N的方阵Θ,使得Θ-1LΘ=J,J为Laplace矩阵L特征值分解后的Jordan标准形。式(16)左右两边分别乘以Θ-1和Θ,可以得到
$ \left[\begin{array}{ccc} \boldsymbol{\varphi}_{6} & \boldsymbol{\varphi}_{2} & \boldsymbol{\varphi}_{3} \\ * & -\boldsymbol{I}_{N} \otimes \gamma \boldsymbol{I} & {\bf{0}} \\ * & * & -\left(\boldsymbol{I}_{N} \otimes \boldsymbol{S}\right) \end{array}\right]<{\bf{0}}. $ | (27) |
其中
$ \begin{gathered} \boldsymbol{\varphi}_{6}=\operatorname{He}\left\{( \boldsymbol { I } _ { N } \otimes \boldsymbol { P } ) \left[\boldsymbol{I}_{N} \otimes(\boldsymbol{A}+\Delta \boldsymbol{A})-\right.\right. \\ \boldsymbol{J} \otimes(\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{k}]\}+\boldsymbol{k}^{\mathrm{T}}\left(\boldsymbol{I}_{N} \otimes \boldsymbol{S}\right) \boldsymbol{k}+\boldsymbol{I}_{N} \otimes \gamma^{-1} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} . \end{gathered} $ |
式(27)成立当且仅当对L的所有实特征值λi,i=1,…,q,
$ \left[\begin{array}{ccc} \boldsymbol{\varphi}_{7} & \boldsymbol{P}(\boldsymbol{B}+\Delta \boldsymbol{B}) & -\boldsymbol{P}(\boldsymbol{B}+\Delta \boldsymbol{B}) \\ * & -\gamma \boldsymbol{I} & {\bf{0}} \\ * & * & -\boldsymbol{S} \end{array}\right]<{\bf{0}} $ | (28) |
成立,其中
$ \begin{gathered} \boldsymbol{\varphi}_{7}=\operatorname{He}\left\{\boldsymbol{P}\left[(\boldsymbol{A}+\Delta \boldsymbol{A})-\lambda_{i}(\boldsymbol{B}+\Delta \boldsymbol{B}) \boldsymbol{k}\right]\right\}+ \\ \boldsymbol{k}^{\mathrm{T}} \boldsymbol{S} \boldsymbol{k}+\gamma^{-1} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{C} . \end{gathered} $ |
由假设1和引理1,可以将式(28)转化为
$ \left[\begin{array}{ccccc} \boldsymbol{\varphi}_{8} & \boldsymbol{P} \boldsymbol{B}+{\varepsilon}_{1}^{-1} \boldsymbol{E}_{1}^{\mathrm{T}} \boldsymbol{E}_{2} & {\varepsilon}_{1}^{-1} \boldsymbol{E}_{1}^{\mathrm{T}} \boldsymbol{E}_{2} \\ * & -\gamma \boldsymbol{I}+\varepsilon_{1}^{-1} \boldsymbol{E}_{2}^{\mathrm{T}} \boldsymbol{E}_{2} & \varepsilon_{1}^{-1} \boldsymbol{E}_{2} \boldsymbol{E}_{2}^{\mathrm{T}} \\ * & * & -\boldsymbol{S}+\varepsilon_{1}^{-1} \boldsymbol{E}_{2}^{\mathrm{T}} \boldsymbol{E}_{2}+{\varepsilon}_{3}^{-1} \boldsymbol{I} \end{array}\right]<{\bf{0}}. $ | (29) |
其中
$ \begin{aligned} \boldsymbol{\varphi}_{8}=& \mathrm{He}\left[\boldsymbol{P}\left(\boldsymbol{P} \boldsymbol{A}-\lambda_{i} \boldsymbol{P} \boldsymbol{B} \boldsymbol{k}\right)\right]+\boldsymbol{k}^{\mathrm{T}} \boldsymbol{S} \boldsymbol{k}+\gamma^{-1} \boldsymbol{C}^{\mathrm{T}} \boldsymbol{C}+\\ &\varepsilon_{1} \boldsymbol{P} \boldsymbol{D} \boldsymbol{D}^{\mathrm{T}} \boldsymbol{P}+\varepsilon_{1}^{-1} \boldsymbol{E}_{1}^{\mathrm{T}} \boldsymbol{E}_{1}+\varepsilon_{2} \lambda_{i}^{2} \boldsymbol{P} \boldsymbol{D} \boldsymbol{D}^{\mathrm{T}} \boldsymbol{P}+\\ &\ \ \ \ \varepsilon_{2}^{-1}\left(\boldsymbol{E}_{2} \boldsymbol{k}\right)^{\mathrm{T}}\left(\boldsymbol{E}_{2} \boldsymbol{k}\right)+\varepsilon_{3} \boldsymbol{P} \boldsymbol{B} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{P} . \end{aligned} $ |
对式(29)使用Schur补引理,可得
$ \left[\begin{array}{cccccccc} \boldsymbol{\varphi}_{9} & \boldsymbol{C}^{\mathrm{T}} & \boldsymbol{P} \boldsymbol{B} & {\bf{0}} & {\bf{0}} & \boldsymbol{E}_{1}^{\mathrm{T}} & \left(\boldsymbol{E}_{2} \boldsymbol{k}\right)^{\mathrm{T}} & \boldsymbol{k}^{\mathrm{T}} \\ * & -\gamma{\boldsymbol{I}} & {\bf{0}} & {\bf{0}} & {\bf{0}} & {\bf{0}} & {\bf{0}} & {\bf{0}} \\ * & * & -\gamma \boldsymbol{I} & {\bf{0}} & {\bf{0}} & \boldsymbol{E}_{2}^{\mathrm{T}} & {\bf{0}} & {\bf{0}} \\ * & * & * & -\boldsymbol{S} & \boldsymbol{I} & \boldsymbol{E}_{2}^{\mathrm{T}} & {\bf{0}} & {\bf{0}} \\ * & * & * & * & -\varepsilon_{3} \boldsymbol{I} & {\bf{0}} & {\bf{0}} & {\bf{0}} \\ * & * & * & * & * & -\varepsilon_{1} \boldsymbol{I} & {\bf{0}} & {\bf{0}} \\ * & * & * & * & * & * & -\varepsilon_{2} \boldsymbol{I} & {\bf{0}} \\ * & * & * & * & * & * & * & -\boldsymbol{S}^{-1} \end{array}\right]<{\bf{0}} . $ | (30) |
其中
$ \begin{gathered} \boldsymbol{\varphi}_{9}=\operatorname{He}\left[\boldsymbol{P}\left(\boldsymbol{P} \boldsymbol{A}-\lambda_{i} \boldsymbol{P} \boldsymbol{B} \boldsymbol{k}\right)\right]+\varepsilon_{1} \boldsymbol{P D} \boldsymbol{D}^{\mathrm{T}} \boldsymbol{P}+ \\ \varepsilon_{2} \lambda_{i}^{2} \boldsymbol{P} \boldsymbol{D} \boldsymbol{D}^{\mathrm{T}} \boldsymbol{P}+\varepsilon_{3} \boldsymbol{P} \boldsymbol{B} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{P}. \end{gathered} $ |
式(30)两边同时乘以
$ \operatorname{diag}\left[\begin{array}{llllllll} \boldsymbol{P}^{-1} & \boldsymbol{I} & \boldsymbol{I} & \boldsymbol{S}^{-1} & \boldsymbol{I} & \boldsymbol{I} & \boldsymbol{I} & \boldsymbol{I} \end{array}\right], $ |
并令X=P-1,Y=kP-1,T=S-1,即可得到式(25)。
对L的所有复特征值λi,i=q+1,…,q+r,式(26)的证明过程与式(25)的相同。证明完毕。
定理2给出了智能电动汽车队列的自适应状态反馈H∞控制器的结构形式,该控制器可以实现外部扰动、参数不确定性和通信延迟的影响下的智能电动车纵向队列控制。此外,定理2给出的线性矩阵不等式是低维的,其矩阵维度不会随着队列中车辆数量的增多而变大。
3 仿真验证为了验证本文所提出的通信延迟下智能电动汽车队列自适应鲁棒H∞控制方法的可行性和有效性,本节将所提出的方法与鲁棒H∞控制方法[24]和线性最优二次型控制方法[25]进行仿真对比试验。将本文提出的自适应鲁棒H∞控制方法称为方法A,鲁棒H∞控制方法称为方法B,最优二次型控制方法称为方法C。
仿真的车辆队列由1辆领航车和5辆跟随车组成,仿真过程中设置车辆长度为2 m,期望间距为1 m。设置领航车的速度为
$ v_{0} /\left(\mathrm{m} \cdot \mathrm{s}^{-1}\right)= \begin{cases}20, & t \leqslant 10 \mathrm{~s} ; \\ 2 t / \mathrm{s}, & 10 \mathrm{~s}<t \leqslant 20 \mathrm{~s} ; \\ 40, & 20 \mathrm{~s}<t \leqslant 30 \mathrm{~s} ; \\ 160-4 t / \mathrm{s}, & 30 \mathrm{~s}<t \leqslant 35 \mathrm{~s}; \\ 20, & 35 \mathrm{~s}<t \leqslant 50 \mathrm{~s} .\end{cases} $ |
设置领航车辆受到如图 2所示的外部扰动。设置每辆车的初始距离误差、初始速度误差和初始加速度误差均为零。取惯性环节的时间常数τ=0.2,则ζ=5 s-1。第1辆跟随车的通信延迟设置为0.1 s,第2—4辆车的通信延迟(0.09+0.01 sint) s,第5辆车的通信延迟设置为(0.07+0.03 sin t) s。仿真过程中,设置D=[0 0 0.5]T,E1=[0.5 0.5 1],E2=[0.1],Fi(t)=sin t。不同控制方法的仿真采用相同的车辆参数和通信延迟设置方案, 同时均使用领航-前车跟随式通信拓扑结构。
![]() |
图 2 外部扰动 |
根据定理2,可以求出方法A的控制增益矩阵k=[5.738 0 9.283 9 3.091 3],
$ \begin{gathered} u_{i}(t)=\boldsymbol{k}\left(\boldsymbol{x}_{i-1}(t)-\boldsymbol{x}_{i}(t)-\boldsymbol{D}_{i, i-1}\right)+ \\ \boldsymbol{k}\left(\boldsymbol{x}_{0}\left(t-\eta_{i}\right)-\boldsymbol{x}_{i}\left(t-\eta_{i}\right)-\boldsymbol{D}_{i, 0}\right). \end{gathered} $ |
其控制增益矩阵k=[5.738 0 9.283 9 3.091 3]。方法C采用的控制器形式为
$ \begin{gathered} u_{i}(t)=\boldsymbol{k}_{a}\left(\boldsymbol{x}_{i-1}(t)-\boldsymbol{x}_{i}(t)-\boldsymbol{D}_{i, i-1}\right)+ \\ \boldsymbol{k}_{c}\left(\boldsymbol{x}_{0}(t-\eta)-\boldsymbol{x}_{i}(t-\eta)-\boldsymbol{D}_{i, 0}\right). \end{gathered} $ |
其控制器增益取ka=[31.333 6 24.225 1 11.712 7],kc=[-8.598 2-6.656 8-3.229 5]。
图 3—8给出了在方法B和方法C作用下队列车辆的距离误差曲线、速度误差曲线和加速度曲线。可见,方法B和方法C都能够使距离误差和速度误差有界收敛到零。由图 3和6可以观察到,在第10 s领航车辆加速度发生变化后,方法B作用下跟随车辆的距离误差小于0.25 m,小于方法C作用下跟随车辆的距离误差,且后车的距离误差小于前车的距离误差。在方法C作用下,后车的距离误差大于前车的距离误差,误差随着车辆传递逐渐变大, 可能会导致车辆发生碰撞。从图 4和7可以看出, 在第10 s后, 方法B作用下跟随车辆的速度误差小于0.25 m/s, 而方法C作用下的速度误差则接近0.7 m/s, 这表明方法B的控制效果明显优于方法C。此外,由图 5和8可以看出,相比于方法C,方法B更能有效地抑制系统状态相应的超调量和振荡。图 3—8表明方法B可以有效地克服系统中存在的扰动、参数不确定性和通信延迟的影响,使系统能够达到所需的距离和速度误差趋于零的控制目标。相比于方法C,方法B提高了队列系统的控制性能,增强了系统的鲁棒性。
![]() |
图 3 (网络版彩图)方法B的距离误差曲线 |
![]() |
图 4 (网络版彩图)方法B的速度误差曲线 |
![]() |
图 5 (网络版彩图)方法B的加速度曲线 |
![]() |
图 6 (网络版彩图)方法C的距离误差曲线 |
![]() |
图 7 (网络版彩图)方法C的速度误差曲线 |
![]() |
图 8 (网络版彩图)方法C的加速度曲线 |
图 9—11分别给出了在方法A作用下队列中车辆的距离误差曲线、速度误差响应曲线和加速度曲线。对比图 9、3和6可以看出,方法A作用下车辆的距离误差明显小于方法B和方法C,同时由图 10、4和7观察到方法A作用下的速度误差明显小于方法B和方法C。此外,与图 5和8相比,图 11中方法A作用下的系统状态响应拥有较小的超调量,同时振荡也明显小于方法B和方法C。可见,在H∞控制器加入自适应项后得到的自适应鲁棒控制器(9)可以较为明显地抑制扰动和参数不确定性对系统的影响,从而改善系统的控制性能。
![]() |
图 9 (网络版彩图)方法A的距离误差曲线 |
![]() |
图 10 (网络版彩图)方法A的速度误差曲线 |
![]() |
图 11 (网络版彩图)方法A的加速度曲线 |
4 结论
本文以智能电动汽车队列为研究对象,考虑队列系统存在通信延迟、外部扰动和参数不确定性的影响, 提出了一种分布式自适应鲁棒H∞控制方法。该方法通过对通信拓扑进行特征值分解,可实现队列系统的解耦,从而将控制器增益的求解问题转化为一个低维的线性矩阵不等式求解问题。采用线性矩阵不等式处理方法, 给出通信延迟下智能电动汽车队列自适应鲁棒控制器的结构形式, 有效解决了通信延迟下的智能电动汽车队列控制问题。仿真试验结果表明,在系统存在通信延迟、外部扰动和参数不确定性的情况下,本文设计的控制方法能够使系统状态在有限时间内收敛到平衡点,具有良好的控制性能。.
[1] |
郭景华, 李克强, 罗禹贡. 智能车辆运动控制研究综述[J]. 汽车安全与节能学报, 2016, 7(2): 151-159. GUO J H, LI K Q, LUO Y G. Review on the research of motion control for intelligent vehicles[J]. Journal of Automotive Safety and Energy, 2016, 7(2): 151-159. DOI:10.3969/j.issn.1674-8484.2016.02.003 (in Chinese) |
[2] |
HEDRICK J K, TOMIZUKA M, VARAIYA P. Control issues in automated highway systems[J]. IEEE Control Systems Magazine, 1994, 14(6): 21-32. DOI:10.1109/37.334412 |
[3] |
辛喆, 张小雪, 陈海亮, 等. 节能型异质汽车队列的切换式有界稳定控制[J]. 清华大学学报(自然科学版), 2019, 59(3): 228-235. XIN Z, ZHANG X X, CHEN H L, et al. Bounded stabilizing control for fuel economy oriented heterogeneous vehicle platoon[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(3): 228-235. (in Chinese) |
[4] |
CAVENEY D. Cooperative vehicular safety applications: Collision avoidance enabled through geospatial positioning and intervehicular communications[J]. IEEE Control Systems Magazine, 2010, 30(4): 38-53. DOI:10.1109/MCS.2010.937003 |
[5] |
ÖNCUÜ S O, PLOEG J, VAN DE WOUW N, et al. Cooperative adaptive cruise control: Network-aware analysis of string stability[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(4): 1527-1537. DOI:10.1109/TITS.2014.2302816 |
[6] |
郭景华, 罗禹贡, 李克强. 智能车辆运动控制系统协同设计[J]. 清华大学学报(自然科学版), 2015, 55(7): 761-768. GUO J H, LUO Y G, LI K Q. Collaborative design of a motion control system for intelligent vehicles[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(7): 761-768. (in Chinese) |
[7] |
SHLADOVER S E, DESOER C A, HEDRICK J K, et al. Automated vehicle control developments in the PATH program[J]. IEEE Transactions on Vehicular Technology, 1991, 40(1): 114-130. DOI:10.1109/25.69979 |
[8] |
LI S E, ZHENG Y, LI K Q, et al. An overview of vehicular platoon control under the four-component framework[C]//Proceedings of 2015 IEEE Intelligent Vehicles Symposium. Seoul, Republic of Korea, 2015: 286-291.
|
[9] |
DESJARDINS C, CHAIB-DRAA B. Cooperative adaptive cruise control: A reinforcement learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1248-1260. DOI:10.1109/TITS.2011.2157145 |
[10] |
DUNBAR W B, CAVENEY D S. Distributed receding horizon control of vehicle platoons: Stability and string stability[J]. IEEE Transactions on Automatic Control, 2012, 57(3): 620-633. DOI:10.1109/TAC.2011.2159651 |
[11] |
ZHENG Y, LI S E, LI K Q, et al. Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies[J]. IEEE Transactions on Control Systems Technology, 2017, 25(3): 899-910. DOI:10.1109/TCST.2016.2594588 |
[12] |
PLOEG J, SHUKLA D P, VAN DE WOUW N, et al. Controller synthesis for string stability of vehicle platoons[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(2): 854-865. DOI:10.1109/TITS.2013.2291493 |
[13] |
LIU X H, GOLDSMITH A, MAHAL S S, et al. Effects of communication delay on string stability in vehicle platoons[C]//Proceedings of 2001 IEEE Intelligent Transportation Systems Conference. Oakland, USA, 2001: 625-630.
|
[14] |
DI BERNARDO M, SALVI A, SANTINI S. Distributed consensus strategy for platooning of vehicles in the presence of time-varying heterogeneous communication delays[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1): 102-112. DOI:10.1109/TITS.2014.2328439 |
[15] |
CAO J H. A guaranteed cost control for autonomous vehicle platoon with communication constraints[C]//Proceedings of 2010 IEEE Youth Conference on Information, Computing and Telecommunications. Beijing, China, 2010: 166-169.
|
[16] |
GAO F, LI S E, ZHENG Y, et al. Robust control of heterogeneous vehicular platoon with uncertain dynamics and communication delay[J]. IET Intelligent Transport Systems, 2016, 10(7): 503-513. DOI:10.1049/iet-its.2015.0205 |
[17] |
LI S B, LI K Q, RAJAMANI R, et al. Model predictive multi-objective vehicular adaptive cruise control[J]. IEEE Transactions on Control Systems Technology, 2011, 19(3): 556-566. DOI:10.1109/TCST.2010.2049203 |
[18] |
ZHENG Y, LI S E, WANG J Q, et al. Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(1): 14-26. DOI:10.1109/TITS.2015.2402153 |
[19] |
REN W, BEARD R W. Distributed consensus in multi-vehicle cooperative control[M]. London, UK: Springer, 2008.
|
[20] |
SWAROOP D, HEDRICK J K. String stability of interconnected systems[J]. IEEE Transactions on Automatic Control, 1996, 41(3): 349-357. DOI:10.1109/9.486636 |
[21] |
GUO G, YUE W. Hierarchical platoon control with heterogeneous information feedback[J]. IET Control Theory & Applications, 2011, 5(15): 1766-1781. |
[22] |
DU H P, ZHANG N, NAGHDY F. Velocity-dependent robust control for improving vehicle lateral dynamics[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(3): 454-468. DOI:10.1016/j.trc.2010.05.004 |
[23] |
俞正光, 鲁自群, 林润亮. 线性代数与几何[M]. 2版. 北京: 清华大学出版社, 2012. YU Z G, LU Z Q, LIN R L. Linear algebra and geometry[M]. 2nd ed. Beijing: Tsinghua University Press, 2012. (in Chinese) |
[24] |
ZHANG W B, TANG Y, HUANG T W, et al. Sampled-data consensus of linear multi-agent systems with packet losses[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(11): 2516-2527. DOI:10.1109/TNNLS.2016.2598243 |
[25] |
MORBIDI F, COLANERI P, STANGER T. Decentralized optimal control of a car platoon with guaranteed string stability[C]//Proceedings of 2013 European Control Conference (ECC). Zurich, Switzerland, 2017: 3494-3499.
|