热管是一种典型的非能动换热元件,由蒸发段、绝热段和冷凝段组成。热管运行时,处于蒸发段的液态工质吸收热量蒸发为气态,由温度差产生的密度梯度驱动向冷凝段移动,随后在冷凝段释放热量凝结为液体,再由重力或者毛细力作用沿管壁流回蒸发段。
热管运行的温度范围为-60~2 300 ℃。在高于450 ℃环境下工作的热管通常被称为高温热管,工质主要为锂、钠、钾、银和钠钾合金等金属[1]。运行工况为250~450 ℃的热管被称为中温热管,工质主要为汞和熔融盐等[2]。在低于250 ℃环境下工作的热管被称为低温热管,常见工质为水、乙醇、FC-72和R-134a等[3-5]。
热管自问世以来,在航空航天、能源、化工和电子等工业领域得到了广泛应用。在航空航天领域,由多种热管组成的热管散热系统[6-10]通过辐射散热、对流散热等方式满足航空/航天器多尺度、多功能的散热需求。在太阳能应用技术领域,热管式太阳能集热器、太阳能光伏板可以在极端气候条件下运行,有效提高了集热效率[11]。在工业领域,热管式换热器应用于炼油装置[12]、空调系统[13]、矿井回风[14]、制氢转化炉预热[15]和锅炉烟气/废热回收[16]。在电子设备冷却领域,热管循环冷却系统可以实现狭小空间的高效散热,与传统空气冷却系统相比,有效增强中央处理器(central processing unit, CPU)等微小设备的散热[17-18]。微型热管、嵌入式热管和重力辅助热管集成的数据设备冷却系统,将数据设备冷却和余热回收系统连接在一起,具有广阔的节能潜力和发展前景[19-20]。
1 热管在先进核能技术中的优势核能可以同时实现电力低碳化和供热低碳化。在保证能源安全的前提下,实现传统能源有序退出,保障碳中和目标按计划完成[21-23]。热管的特点与核能的安全设计理念相契合,热管在核电设计中得到广泛应用。图 1展示了不同温度下,热管在核能领域的应用,表明热管在先进核能技术中的重要地位和应用前景。目前,热管主要应用在核电/动力系统、核安全设施和核能城市服务设施等核工业领域。随着热管技术的不断完善,热管还将为高温制氢、煤气化和油砂开采等其他工业领域,提供安全、长期、高效的供热和冷却支持。热管多领域、多尺度、多环节服务核工业,为先进核能发展发挥了不可替代的作用。本文综述了先进核能应用中的热管技术,详细阐述了高温金属热管和热管冷却反应堆的研究现状,介绍了核安全设施和核能城市服务设施中的热管应用情况,探讨了核领域未来热管技术发展的关键挑战。
2 热管冷却反应堆
高温金属热管内部通过工质的蒸发、冷凝和自然循环流动过程将反应堆堆芯产生的热量非能动地传导至核热推进系统或热电转换装置的固态反应堆称为热管冷却反应堆。热管冷却反应堆主要有3个优势:1) 热管堆是固态反应堆,没有传统的一回路设备,整个系统更加简单和紧凑,便于运输和存储;2) 热管堆非能动地带出堆芯热量,从而避免了由强制冷却损失造成的严重事故;3) 热管彼此独立,即使在单根热管局部失效的情况下,周围的热管仍然正常工作,可有效避免严重事故[34-36]。
2.1 高温金属热管金属工质在常温下呈固态,启动时工质需要经过由固态到气态的相变,启动时间较长。启动功率过高会导致热管蒸发段干涸,启动功率过小则会受到启动极限限制导致启动失败[35]。因此,高温金属热管的启动特性研究成为热管堆设计和建造的难点。Zhang等[37]建立了预测热管的瞬态性能三阶段冻结启动模型。Teng等[38]实验发现微小摆动条件对钠热管的启动时间影响较小,而温度的波动随摆动幅度的增大而增大。Wang等[39]发现在恒热流下高温钾热管启动过程中,水平条件下的热管启动功率上限较高,轻微倾斜条件下的热管启动功率下限降低且启动时间缩短,具有负倾角的热管会出现毛细管极限,具有低加热功率的热管会出现黏度极限。尽管引入适当不凝性气体可以减少热管散热,加速连续蒸汽形成,使蒸汽流动更平稳,但热管的启动时间也会相应延长,且不凝性气体还会显著降低热管的传热性能[35]。
在传热性能方面,Tian等[40-42]评价了6种金属工质和9种不同吸液芯上的热管传热性能。Sun等[43]研究发现高温热管等温特性在短暂倾斜时会受到破坏,在垂直提升时变化不大,周期性的摆动会引起相同周期内的温度波动;冷凝器过长时,热管在周期性摆动条件下更容易失效。Ji等[44]认为高真空度是热管运行的先决条件,强毛细驱动力和适宜的充液率、热管尺寸可以显著提高高温金属热管的自适应传热性能。Tournier等[45]和赵蔚琳等[46]发现过高的热管充液率会产生液体堵塞,而充液率过低则会使蒸发段局部干涸,导致传热恶化。
2.2 热管冷却反应堆设计热管冷却反应堆的概念最早于20世纪60年代被提出。如图 2所示,热管冷却反应堆结构包括燃料棒、热管、控制鼓/控制棒、反射层、屏蔽层、热电转换装置/推进装置和辐射换热器。其中,热管冷却反应堆的堆芯为六边形或圆形,堆芯的外侧与前端面有反射层和屏蔽层,采用旋转控制鼓或控制棒实现对反应堆功率的调节,热管导出的热量通过热电转换装置发电或通过核热/核电推进装置提供动力输出,多余热量经辐射换热器排入最终热阱。
2000年,洛斯阿拉莫斯国家实验室(Los Alamos National Laboratory, LANL)首先提出了充满燃料棒-热管三角形单元的六角形核心的热管冷却反应堆方案[49]。随后,为了适应实际需求,美国提出了多种基于热管冷却反应堆的能源设计方案,具体设计参数见表 1。热管反应堆的设计功率从千瓦级到兆瓦级不等。根据不同的设计功率选择不同工质的高温热管导出堆芯热量,其中也有以汞为工质的中温热管冷却反应堆[2]。由于缺乏合适的耐高温慢化剂材料,热管堆通常采用快堆堆型设计。文[55-56]根据金属冷却热中子反应堆动力系统TOPAZ-II,提出了一种采用氢化锆慢化的热管冷却的热中子反应堆。经过近40 a的概念设计,热管冷却反应堆已进入原型堆建设阶段。2018年,LANL宣布完成了千瓦级热管堆KRUSTY的带核实验[57]。2020年,LANL与西屋公司合作,宣布推进热管冷却堆eVinci的商业化[58]。
名称 | 热功率/kW | 热管工质 | 堆型 | 控制方式 | 燃料 | 燃料富集度/% | 热电转换方式 |
KRUSTY[50] | 4.3 | 钠 | 快堆 | 控制棒 | U-Mo | 93.10 | Stirling循环 |
LEGO-LRC[51] | 20.0~24.0 | 钠 | 快堆 | 控制棒 | UO2 | 93.00 | Stirling循环 |
HOMER[49] | 125.0 | 钠 | 快堆 | 控制鼓 | UO2 | 93.00 | Stirling循环 |
SAIRS[52] | 407.0~487.0 | 钠 | 快堆 | 控制鼓 | UN | 83.50 | 碱金属循环 |
MSR[53] | 1 200.0 | 锂 | 快堆 | 控制鼓 | UN | 33.10 | 热离子循环 |
HP-STMCs[47-48] | 1 600.0 | 锂 | 快堆 | 控制鼓 | UN | 55.00~85.00 | 热电偶转换 |
Megapower[54] | 5 000.0 | 钾 | 快堆 | 控制鼓 | UO2/UN | 19.75 | Brayton循环 |
应用于热管冷却反应堆热电转换的方式有2种:一种是动态转换。该转换装置先将热能转变为机械能,再通过发电机将机械能进一步转变为电能。另一种是静态转换。该转换装置直接将热能转换为电能,不需要发电机,没有机械转动部件,也无噪声,称为静态转换。目前研究中接受度较高的热电转换方式主要是Stirling循环、Brayton循环、碱金属循环和热离子循环。其中,在动态转换方案中Stirling循环的效率高,Brayton循环的比功率高;在静态转换方案中碱金属循环的效率高,热离子循环的比功率高[59]。
2.3 热管冷却反应堆应用领域图 3为热管冷却反应堆在深空、深海和深地的应用。核能在可靠性、可持续性和能量密度等方面具有无可比拟的优势。因此,核能是开展大功率空间任务的主要能源选择。
![]() |
图 3 热管冷却反应堆的应用 |
空间核动力系统分为4类:空间核热源系统、空间核电源系统、空间核推进系统和双模式空间核动力系统[58-59]。
航空核动力系统具有大载重量、无限续航的优点。目前航空核动力系统的设计多为开式循环,空气直接与堆芯换热,结构简单,却增加了核燃料泄漏的风险。航空核动力系统受重量、体积的限制较为明显。基于热管冷却反应堆的航天核动力装置可同时解决这2个问题。随着核技术的进一步发展,未来将应用于洲际巡航导弹推进、无人机续航和核动力货运飞机等领域[60]。
在深海领域,热管冷却反应堆主要用于无人水下潜航器。与传统电源相比,核动力电源具有更高的能量密度、更长的使用寿命和更高的可靠性,是无人水下潜航器电源非常理想的解决方案[61]。中国拥有数量众多的海岛和丰富的海洋资源,未来基于小堆型的海洋核动力平台及核动力船舶将为海洋资源的开发提供稳定的能源供给。
热管冷却反应堆具有体积小、便于运输和固有安全等特性,有望应用于车载核电源和分布式核电源[62-63]。
3 基于热管技术的核设施热管具有冷热源灵活布置,热管破裂后冷热源工质不混合以及单根热管故障不会影响整个系统正常运行等高安全特性。由于热管的特性与核设施的安全设计要求相符,热管已被大量应用于核电设计。先进核电技术提出了无需场外应急的设计目标,具有非能动特性的热管系统成为优选。
3.1 非能动安全系统非能动安全系统是指不依靠外部能源输入,仅利用自然界自发现象,如重力、惯性和密度差等驱动系统自发运行,从而保证反应堆安全的设施。非能动安全系统已成为核动力装置设计中的重要组成部分。目前采用热管设计的非能动安全系统包括非能动应急堆芯冷却系统、非能动乏燃料池冷却系统、非能动安全壳冷却系统和非能动余热排出系统。
Jeong等[64]提出了基于APR1400的热管型应急堆芯冷却系统。Kim和Bang[65]实验研究了基于APR1400的热管型应急堆芯冷却系统的传热极限。Ohashi等[66]研究了基于模块化HTR的衰变热余热排出系统。Wang等[67]设计了基于I2S-LWR的衰变热余热排出系统。Choi等[68]设计了叉状热管式乏燃料池冷却系统。化新超等[69]研究了基于分离式热管的非能动安全壳冷却系统的传热性能。姜舒婷和邹文重[70]研究了严重事故下HPR1000的非能动安全壳冷却系统事故影响分析。Wang等[71]基于熔盐堆设计了高温钠热管非能动余热排出系统。刘逍等[72]设计了基于水下无人航行器的热管堆与热电转换装置结合的高温热管非能动余热排出系统。Hu等[73]研究了小型铅基反应堆中非能动余热排出系统的热管失效问题。Xu等[74]实验研究了低温供热堆的热管型余热排出系统。Qiao等[75]研究了余热排出系统换热水箱的热管型两相换热器的长期换热性能。
3.2 热管空间辐射散热器热管空间散热器是由热管和散热片组成的辐射冷却系统,具有良好的等温性、环境适应性、抗碎片冲击性和防单点失效等特征[76],被用于航天器的温度调节,是较有前途的空间散热器。因此热管空间散热器在SPACE-100、JIMO和HP-STMCs等空间核反应堆电源设计的概念中出现。近年来,热管式辐射散热器成为国内外研究的热点。由于空间核动力系统设计的热管空间散热系统总体还处于概念设计阶段,进一步减小辐射板换热面积和换热器质量是优化设计辐射散热器的研究方向。姚良等[9]设计并分析了接触-导热式空间辐射散热器。Lu等[76]设计了兆瓦级空间辐射散热系统。张昊春等[77]分析并优化了兆瓦级空间核反应堆的热管式空间辐射散热系统。张秀等[78]研究并优化了空间核电源热管式辐射散热器的参数。
3.3 聚变堆高温部件散热Tokamak装置要承受极高的温度和热流密度,对其高温部件进行有效冷却是实现持续聚变反应的关键。Kovalenko等[79]基于空间技术和国际热核聚变反应堆(international thermonuclear experimental reactor, ITER)实践提出了钠热管和水热管2种冷却方案,用于受控热核聚变第一壁、偏滤器和电磁驱动限制器的散热,充分利用热管适用温度范围广、导热系数高、极限热流密度极高和避免单管失效等优点,提高了换热的可靠性。由于强磁场环境可能对金属热管的回流特性产生一定的影响,目前ITER第一壁的换热主要采用水冷换热的方式[29]。
4 基于热管技术的核能城市服务目前,核能供热受压水堆核电站运行温度制约,核能高温供热还不普及,因此热管在核能高温供热领域还未推广。在核工业领域,热管主要应用于余热回收和低温换热,以提高核能的利用效率。美国爱达荷国家实验室(Idaho National Laboratory, INL)指出高温气冷堆的高温热源在热电联供、煤气化、高温制氢、制氨和化肥合成等有广泛的应用前景[80]。如图 4所示,热管凭借其较宽的运行温度范围,可满足核工业下游生产中各温度梯级的换热。
4.1 海水淡化
热管具有高等温性和冷热源完全隔离的特点,不仅可有效利用核动力反应堆产生的大部分余热生产更多的饮用水,还可以防止辐射和产出水之间的直接接触,减少海水淡化过程对环境的影响,确保在正常过程下产出水不受到任何污染[30, 81]。Hegazy等[82]基于蒸汽发电厂低热海水冷却水设计了一种新型的海水淡化系统,在低比能耗(1.0~8.0 kW·h/kg)下获得高淡水生产速率(1.5~10.0 kg/h)。Tanaka和Park[83]设计了基于热管的发动机废气热能海水蒸馏器,实验表明40%~50%的废气热能可通过热管输送,约35%的废气热能可用于盐水蒸馏。Gao等[84]基于热管和喷雾技术设计了一种单级真空蒸发器,有效利用了40~80 ℃的较低等级的热源,实现了32 W/cm2的热通量。
4.2 区域供热中国在核能供热领域具备自主研发优势。在供热反应堆方面,清华大学核能与新能源技术研究院设计建造的壳式低温核供热反应堆和中国原子能科学研究院的49-2泳池堆均验证了核能供热的可靠性。在核能热电联供方面,秦山核电站和海阳核电站实现商用核电机组的区域供热,海阳市实现核能供热全覆盖[85]。在多能供热方面,文[86]提出了基于动力式热管的多能互补供热系统。核能供热必须保证换热回路间只有热量的交换而没有工质的泄漏[87],其换热回路往往多于传统供热方式。文[31]提出多级式热泵驱动热管供热系统以提高热能利用效率。
4.3 发电-制氢-供热三元联产目前,文[33]提出利用氦气轮机发电和高温电解氢实现高温制氢-发电-供热三元联产,通过预冷器、中冷器多级换热,梯度利用热能并回收余热,从而提高能源利用率并节约能源。Ando[88]提出一种应用于高温气冷堆的高温金属热管交换器,能够防止氢气和氦气2种热交换流体扩散泄漏,进一步提高了供热接口的温度和供热效率,为后续高温炼钢等工业提供热源支持。
5 总结与展望热管以其范围较宽的工作温度、灵活的结构布置、非能动且高效的换热性能和单根热管失效不影响整体运行等特点,为先进核能发展提供了可靠安全的技术支持,在反应堆设计、核安全及辅助系统、核能供热接口和核能城市服务中均有广泛的应用前景。目前,先进热管技术还存在诸多挑战。
1) 热管性能研究。热管的传热性能受传热极限、运行工况等物理因素制约,需要开展新型热管及内部毛细芯设计研究;考虑到高温、辐照和工质兼容性等限制,需要对热管开展高温材料研究;对热管内不凝性气体和充液率的研究还不充分;需要进一步优化热管制造工艺。
2) 热管适应性研究。结合应用场景,如太空、深海和陆地等,开展不同的适应性设计研究;结合不同的反应堆功率,开展热管堆型布置的研究;反应堆中单根热管失效、局部热管失效和热管冷却反应堆事故等情况还有待研究。
3) 热管运行研究。需进一步展开对高温热管运行稳态及冷热态之间转换的研究;对在振动、摇摆、倾斜和倾覆等工况下的热管传热恶化研究较少;待开展热管偏离稳态后的自恢复、自适应性能研究。
热管具有非能动安全特性、高换热效率、等热性、灵活布置和单根失效可用等优点,与先进核能安全设计理念相符,现已广泛应用于核电/动力系统及核安全设施中。在高温热管方面,还需在启动特性、传热性能、事故分析上开展深入研究。在低温热管方面,还需探索长期运行的热管式非能动安全系统设计方案。在中温热管方面,核工业应用还不多,可在余热回收上开展应用研究。先进热管技术的发展对加快核能从供电向多用途供能方向转型,从集中式供能向分布式供能转型,从单一能源向多能协同系统转型,提高公众对核能的接受度,有序实现化石能源减退,稳步实现碳中和目标,具有重要意义。
[1] |
李文军, 肖星宇, 周圣辉, 等. 高温热管的研究进展及应用[J]. 现代化工, 2020, 40(6): 15-18, 23. LI W J, XIAO X Y, ZHOU S H, et al. Research progress on high temperature heat pipes and application[J]. Modern Chemical Industry, 2020, 40(6): 15-18, 23. (in Chinese) |
[2] |
LI S N, LIANG Z T, YAN B H. A medium temperature heat pipe cooled reactor[J]. Annals of Nuclear Energy, 2022, 172: 109068. DOI:10.1016/j.anucene.2022.109068 |
[3] |
郭浩, 彭家略, 尤天伢, 等. 工质对重力热管壁温与传热特性的影响[J]. 工程热物理学报, 2021, 42(11): 2893-2898. GUO H, PENG J L, YOU T Y, et al. Effect of working fluids on wall temperature and heat transfer characteristics of gravity heat pipe[J]. Journal of Engineering Thermophysics, 2021, 42(11): 2893-2898. (in Chinese) |
[4] |
郭浩, 尤天伢, 纪献兵, 等. 重力热管壁温与传热特性的实验分析[J]. 科学技术与工程, 2021, 21(10): 4036-4042. GUO H, YOU T Y, JI X B, et al. Experimental analysis of wall temperature and heat transfer characteristics of gravity heat pipe[J]. Science Technology and Engineering, 2021, 21(10): 4036-4042. (in Chinese) |
[5] |
丁林超, 袁达忠, 唐大伟, 等. 标准黑体源用铜-R134a热管研制及均温性实验研究[J]. 计量学报, 2017, 38(3): 292-295. DING L C, YUAN D Z, TANG D W, et al. Development and experimental study on the temperature uniformity of Cu-R134a heat pipe used for standard blackbody source[J]. Acta Metrologica Sinica, 2017, 38(3): 292-295. (in Chinese) |
[6] |
沈琼, 李志松. 微型热管的增材制造与传热性能分析[J]. 科技创新与应用, 2021, 11(21): 48-52, 55. SHEN Q, LI Z S. An analysis of additive manufacturing and heat transfer performance of miniature heat pipe[J]. Technology Innovation and Application, 2021, 11(21): 48-52, 55. (in Chinese) |
[7] |
杨涛, 赵石磊, 高腾, 等. 航天分散热源控温用环路热管设计及飞行应用[J]. 宇航学报, 2021, 42(6): 798-806. YANG T, ZHAO S L, GAO T, et al. Design and in-orbit application of temperature controlled loop heat pipe for aerospace distributed heat sources[J]. Journal of Astronautics, 2021, 42(6): 798-806. (in Chinese) |
[8] |
李果, 许源, 张雨辰, 等. 径向旋转热管的数值模拟方法[J/OL]. 航空动力学报. (2022-04-06)[2022-10-13]. DOI: 10.13224/j.cnki.jasp.20210639. LI G, XU Y, ZHANG Y C, et al. Numerical simulation of radial rotating heat pipe[J/OL]. Journal of Aerospace Power. (2022-04-06)[2022-10-13]. DOI: 10.13224/j.cnki.jasp.20210639.(inChinese) |
[9] |
姚良, 王苏明, 张红娜, 等. "接触—导热"式热管辐射散热器设计与分析[J/OL]. 中国空间科学技术. (2022-08-12)[2022-10-09]. https://kns.cnki. net/kcms2/article/abstract? v=Di9gc0lM_EuLi5fJtXh7RfvOwikpODs UXZt CXCngJzc-Jsxf4NnGg3y5UBbA1c58b3_jqw8_-JuEG9 RBYPpXgyV1tRaojfWlXQh77nd7-mbukrAfmtCTaw==&uniplatform=NZKPT&language=gb. YAO L, WANG S M, ZHANG H N, et al. Design and analysis of "contact-heat conduction" heat pipe radiator[J/OL]. Chinese Space Science and Technology. (2022-08-12)[2022-10-09]. https://kns.cnki.net/kcms2/article/abstract?v=Di9gc0lM_EuLi5fJtXh7RfvOwikpODs UXZt CXCngJzc-Jsxf4NnGg3y5UBbA1c58b3_jqw8_-JuEG9 RBYPpXgyV1tRaojfWlXQh77nd7-mbukrAfmtCTaw==&uniplatform=NZKPT&language=gb. (in Chinese) |
[10] |
朱晓军, 刘祥, 李锋, 等. 前缘一体化高温热管结构防热效果的实验研究[J]. 气体物理, 2022, 7(5): 78-88. ZHU X J, LIU X, LI F, et al. Experimental study on the thermal protection effect of the leading edge integrated high-temperature heat pipe structure[J]. Physics of Gases, 2022, 7(5): 78-88. (in Chinese) |
[11] |
LI H, LIU H Y, LI M. Review on heat pipe based solar collectors: Classifications, performance evaluation and optimization, and effectiveness improvements[J]. Energy, 2022, 244: 122582. DOI:10.1016/j.energy.2021.122582 |
[12] |
赵洪德, 刘继东, 周广启, 等. 换热器在石油化工行业中的应用及维护[J]. 造纸装备及材料, 2022, 51(3): 52-54. ZHAO H D, LIU J D, ZHOU G Q, et al. Application and maintenance of heat exchanger in petrochemical industry[J]. Papermaking Equipment & Materials, 2022, 51(3): 52-54. (in Chinese) |
[13] |
曹斌, 陆琼文. 医学实验室空调通风系统能效提升技术研究[J]. 暖通空调, 2022, 52(9): 147-152. CAO B, LU Q W. Energy efficiency improvement technologies of air conditioning and ventilation system in medical laboratories[J]. Heating Ventilating & Air Conditioning, 2022, 52(9): 147-152. (in Chinese) |
[14] |
路膺祚, 鲍玲玲, 赵旭, 等. 矿用热管换热器析湿工况换热分析[J]. 煤炭工程, 2022, 54(3): 165-170. LU Y Z, BAO L L, ZHAO X, et al. Heat transfer of mine heat pipe heat exchanger in dehumidifying conditions[J]. Coal Engineering, 2022, 54(3): 165-170. (in Chinese) |
[15] |
杨光明. 热管式空气预热器在制氢转化炉上的应用[J]. 石油化工设备技术, 1999, 20(4): 21-23. YANG G M. Application of heat tube type air preheater on hydrogen manufacturing conversion furnace[J]. Petro-Chemical Equipment Technology, 1999, 20(4): 21-23. (in Chinese) |
[16] |
杨晓菁, 李玉锦. 热管空气预热器在锅炉中的应用[J]. 应用能源技术, 2020(9): 43-45. YANG X J, LI Y J. Application of heat pipe air preheater in industrial boiler[J]. Applied Energy Technology, 2020(9): 43-45. (in Chinese) |
[17] |
ZHANG H N, SHAO S Q, XU H B, et al. Free cooling of data centers: A review[J]. Renewable and Sustainable Energy Reviews, 2014, 35: 171-182. |
[18] |
IYENGAR M, DAVID M, PARIDA P, et al. Server liquid cooling with chiller-less data center design to enable significant energy savings[C]// Proceedings of the 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM). San Jose, USA: IEEE, 2012: 212-223.
|
[19] |
WANG X L, WEN Q W, YANG J X, et al. A review on data centre cooling system using heat pipe technology[J]. Sustainable Computing: Informatics and Systems, 2022, 35: 100774. |
[20] |
OUCHI M, ABE Y, FUKAGAYA M, et al. New thermal management systems for data centers[J]. Journal of Thermal Science and Engineering Applications, 2012, 4(3): 031005. |
[21] |
辛保安, 陈梅, 赵鹏, 等. 碳中和目标下考虑供电安全约束的我国煤电退减路径研究[J]. 中国电机工程学报, 2022, 42(19): 6919-6931. XIN B A, CHEN M, ZHAO P, et al. Research on coal power generation reduction path considering power supply adequacy constraints under carbon neutrality target in China[J]. Proceedings of the CSEE, 2022, 42(19): 6919-6931. (in Chinese) |
[22] |
中国核工业. 全球能源凛冬将至, 各国对核电不再"举棋不定"[OL]. (2022-09-21)[2022-10-05]. https://www.cnnpn.cn/article/32803.html. China Nuclear Industry. As global energy winter approaches, countries no longer 'ambivalent' about nuclear power[OL]. (2022-09-21)[2022-10-05]. https://www.cnnpn.cn/article/32803.html. (in Chinese) |
[23] |
张成岗, 王宇航. 后常规科学视域下的新型举国体制与科技治理现代化[J]. 云南社会科学, 2022(4): 28-36. ZHANG C G, WANG Y H. New national system and modernization of science and technology governance from the perspective of post-normal science[J]. Social Sciences in Yunnan, 2022(4): 28-36. (in Chinese) |
[24] |
刘叶, 周磊, 昝元峰, 等. 热管技术在先进反应堆中的应用现状[J]. 核动力工程, 2016, 37(6): 121-124. LIU Y, ZHOU L, ZAN Y F, et al. Review of heat pipe application in advanced nuclear reactors[J]. Nuclear Power Engineering, 2016, 37(6): 121-124. (in Chinese) |
[25] |
吉宇, 毛晨瑞, 孙俊, 等. 核热火箭发动机系统循环方案分析与设计[J]. 火箭推进, 2022, 48(1): 14-21. JI Y, MAO C R, SUN J, et al. Analysis and design of system cycle for nuclear thermal rocket engine[J]. Journal of Rocket Propulsion, 2022, 48(1): 14-21. (in Chinese) |
[26] |
WANG C L, SUN H, TANG S M, et al. Thermal-hydraulic analysis of a new conceptualheat pipe cooled small nuclear reactor system[J]. Nuclear Engineering and Technology, 2020, 52(1): 19-26. |
[27] |
SVIRIDENKO I I. Modernization of the WWER-1000 emergency repair cooling system using the low-temperature heat pipe heat-exchangers[C]// International Conference 'NPP life management'. Kiev, Ukraine: Ukrainian Nuclear Society, 2003: 11-12.
|
[28] |
HAN F, KUANG Y W, YE C, et al. Investigation on thermal-hydraulic characteristics of the spent fuel pool with a complete passive cooling system[J]. Annals of Nuclear Energy, 2022, 177: 109326. |
[29] |
陈畅, 蒋科成, 王万景, 等. 水冷陶瓷包层第一壁制造偏差对传热与热应力的影响分析[J]. 核聚变与等离子体物理, 2022, 42(3): 314-321. CHEN C, JIANG K C, WANG W J, et al. Study on the effect of the manufacturing tolerance of WCCB blanket first wall on the heat transfer and thermal stress[J]. Nuclear Fusion and Plasma Physics, 2022, 42(3): 314-321. (in Chinese) |
[30] |
JOUHARA H, ANASTASOV V, KHAMIS I. Potential of heat pipe technology in nuclear seawater desalination[J]. Desalination, 2009, 249(3): 1055-1061. |
[31] |
邵月月, 马国远, 王月月, 等. 多联式热泵驱动热管复合供热装置的实验研究[J]. 制冷学报, 2020, 41(4): 32-36, 67. SHAO Y Y, MA G Y, WANG Y Y, et al. Experimental study on multi-connected heat pump/heat pipe heating device[J]. Journal of Refrigeration, 2020, 41(4): 32-36, 67. (in Chinese) |
[32] |
余红星, 马誉高, 张卓华, 等. 热管冷却反应堆的兴起和发展[J]. 核动力工程, 2019, 40(4): 1-8. YU H X, MA Y G, ZHANG Z H, et al. Initiation and development of heat pipe cooled reactor[J]. Nuclear Power Engineering, 2019, 40(4): 1-8. (in Chinese) |
[33] |
XU J, ZHOU Q, TIAN H, et al. High-temperature gas-cooled reactor nuclear power generation, hydrogen production and heating triple production system, has middle cooler whose heat exchange pipe is connected with heat exchange station: CN114215617-A[P]. 2022-03-22.
|
[34] |
SUN H, WANG C L, MA P, et al. Conceptual design and analysis of a multipurpose micro nuclear reactor power source[J]. Annals of Nuclear Energy, 2018, 121: 118-127. |
[35] |
杨海旺, 代智文, 王成龙. 碱金属高温热管传热特性研究综述[J]. 热加工工艺, 2022, 51(20): 1-7. YANG H W, DAI Z W, WANG C L. Review on transferring characteristics of alkali metal high temperature heat pipe[J]. Hot Working Technology, 2022, 51(20): 1-7. (in Chinese) |
[36] |
余占江. 热管技术在核反应堆中的应用研究[D]. 成都: 成都理工大学, 2014. YU Z J. The research of heat pipe technology applied in the field of nuclear reactor[D]. Chengdu: Chengdu University of Technology, 2014. (in Chinese) |
[37] |
ZHANG Z Q, CHAI X M, WANG C L, et al. Numerical investigation on startup characteristics of high temperature heat pipe for nuclear reactor[J]. Nuclear Engineering and Design, 2021, 378: 111180. |
[38] |
TENG W F, WANG X Y, ZHU Y Z. Experimental investigations on start-up and thermal performance of sodium heat pipe under swing conditions[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119505. |
[39] |
WANG C L, ZHANG L R, LIU X, et al. Experimental study on startup performance of high temperature potassium heat pipe at different inclination angles and input powers for nuclear reactor application[J]. Annals of Nuclear Energy, 2020, 136: 107051. |
[40] |
TIAN Z X, LIU Y, WANG C L, et al. Single/multi- objective optimization and comparative analysis of liquid-metal heat pipe[J]. International Journal of Energy Research, 2022, 46(12): 17521-17539. |
[41] |
TIAN Z X, ZHANG J R, WANG C L, et al. Experimental evaluation on heat transfer limits of sodium heat pipe with screen mesh for nuclear reactor system[J]. Applied Thermal Engineering, 2022, 209: 118296. |
[42] |
TIAN Z X, LIU X, WANG C L, et al. Experimental investigation on the heat transfer performance of high-temperature potassium heat pipe for nuclear reactor[J]. Nuclear Engineering and Design, 2021, 378: 111182. |
[43] |
SUN H, LIU X, LIAO H Y, et al. Experiment study on thermal behavior of a horizontal high-temperature heat pipe under motion conditions[J]. Annals of Nuclear Energy, 2022, 165: 108760. |
[44] |
JI Y, YUAN D Z, CHE Z X, et al. Study on adaptive heat transfer performance of high temperature heat pipe[J]. Annals of Nuclear Energy, 2021, 163: 108536. |
[45] |
TOURNIER J M, EL-GENK M S. Startup of a horizontal lithium-molybdenum heat pipe from a frozen state[J]. International Journal of Heat & Mass Transfer, 2003, 46(4): 671-685. |
[46] |
赵蔚琳, 庄骏, 张红. 影响高温钠热管起动因素的实验研究[C]// 第八届全国热管会议论文集. 成都, 中国: 中国工程热物理学会, 2002: 114-118. ZHAO W L, ZHUANG J, ZHANG H. Experimental study on the factors affecting the starting of high temperature sodium heat pipe[C]// Proceedings of the 8th National Heat Pipe Conference. Chengdu, China: Chinese Society of Engineering Thermophysics, 2002: 114-118. (in Chinese) |
[47] |
LIU X, ZHANG R, LIANG Y, et al. Core thermal-hydraulic evaluation of a heat pipe cooled nuclear reactor[J]. Annals of Nuclear Energy, 2020, 142: 107412. |
[48] |
TOURNIER J M, EL-GENK M S. Reactor lithium heat pipes for HP-STMCs space reactor power system[J]. AIP Conference Proceedings, 2004, 699: 781-792. |
[49] |
POSTON D I. The heat pipe-operated mars exploration reactor (HOMER)[R]. Los Alamos: Los Alamos National Lab, 2000.
|
[50] |
POSTON D I, GODFROY T, MCCLURE P R, et al. Kilopower Project-KRUSTY experiment nuclear design[R]. Los Alamos: Los Alamos National Lab, 2015.
|
[51] |
BESS J D. A basic LEGO reactor design for the provision of lunar surface power[R]. Idaho: Office of Scientific & Technical Information Technical Reports, 2008.
|
[52] |
EL-GENK M S, TOURNIER J M P. "SAIRS": Scalable Amtecintegrated reactor space power system[J]. Progress of Nuclear Energy, 2004, 45(1): 25-69. |
[53] |
BUSHMAN A, CARPENTER D M, ELLIS T S, et al. The martian surface reactor: An advanced nuclear power station for manned extraterrestrial exploration[R]. Cambridge: Massachusetts Institute of Technology, 2004.
|
[54] |
MCCLURE P R, POSTON D I, DASARI V R, et al. Design of megawatt power level heat pipe reactors[R]. Los Alamos: Los Alamos National Lab, 2015.
|
[55] |
ZHANG W W, ZHANG D L, WANG C L, et al. Conceptual design and analysis of a megawatt power level heat pipe cooled space reactor power system[J]. Annals of Nuclear Energy, 2020, 144: 107576. |
[56] |
ZHANG W W, ZHANG D L, TIAN W X, et al. Thermal-hydraulic analysis of the improved TOPAZ-Ⅱ power system using a heat pipe radiator[J]. Nuclear Engineering and Design, 2016, 307: 218-233. |
[57] |
缪力威. Kilopower与KRUSTY的发展脉络及研发现状[J]. 科技创新导报, 2020, 17(17): 65-69. MIAO L W. Development context and research and development status of Kilopower and KRUSTY[J]. Science and Technology Innovation Herald, 2020, 17(17): 65-69. (in Chinese) |
[58] |
伍浩松, 郭志锋. 美国防部资助三种移动式微堆研发[J]. 国外核新闻, 2020(4): 10. WU H S, GUO Z F. The U.S. Department of Defense is funding development of three mobile micro-reactors[J]. Foreign Nuclear News, 2020(4): 10. (in Chinese) |
[59] |
陈杰, 高劭伦, 夏陈超, 等. 空间堆核动力技术选择研究[J]. 上海航天, 2019, 36(6): 1-10. CHEN J, GAO S L, XIA C C, et al. Study on space nuclear power technological option[J]. Aerospace Shanghai, 2019, 36(6): 1-10. (in Chinese) |
[60] |
柏莹. 锂冷航空核动力系统传热与推进特性研究[D]. 合肥: 中国科学技术大学, 2019. BAI Y. Study on heat transfer and propulsion characteristics of lithium-cooled nuclear power system for aviation[D]. Hefei: University of Science and Technology of China, 2019. (in Chinese) |
[61] |
秋穗正, 张泽秦, 张智鹏, 等. 海洋静默式热管反应堆热工水力特性研究[J]. 原子能科学技术, 2022, 56(6): 989-1004. QIU S Z, ZHANG Z Q, ZHANG Z P, et al. Study on thermal-hydraulic characteristics of ocean silent heat pipe cooled reactor[J]. Atomic Energy Science and Technology, 2022, 56(6): 989-1004. (in Chinese) |
[62] |
MCCLURE P R, REID R S, DIXON D D. Advantages and applications of megawatt-sized heat-pipe reactors[R]. La Grange Park: American Nuclear Society, 2012.
|
[63] |
STERBENTZ J W, WERNER J E, MCKELLAR M G, et al. Special purpose nuclearreactor(5 MW) for reliable power at remote sites assessment report[R]. Idaho Falls: Idaho National Laboratory, 2017.
|
[64] |
JEONG Y S, KIM K M, KIM I G, et al. Hybrid heat pipe based passive in-core cooling system for advanced nuclear power plant[J]. Applied Thermal Engineering, 2015, 90: 609-618. |
[65] |
KIM K M, BANG I C. Comparison of flooding limit and thermal performance of annular and concentric thermosyphons at different fill ratios[J]. Applied Thermal Engineering, 2016, 99: 179-188. |
[66] |
OHASHI K, HAYAKAWA H, YAMADA M, et al. Preliminary study on the application of the heat pipe to the passive decay heat removal system of the modular HTR[J]. Progress in Nuclear Energy, 1998, 32(3-4): 587-594. |
[67] |
WANG M J, MANERA A, PETROV V, et al. Passive decay heat removal system design for the integral inherent safety light water reactor (I2S-LWR)[J]. Annals of Nuclear Energy, 2020, 145: 106987. |
[68] |
CHOI J, LIM C, KIM H. Fork-end heat pipe for passive air cooling of spent nuclear fuel pool[J]. Nuclear Engineering and Design, 2021, 374: 111081. |
[69] |
化新超, 李星星, 潘良明. 基于分离式热管构成的非能动安全壳冷却系统传热性能影响因素研究[J]. 核安全, 2022, 21(3): 62-69. HUA X C, LI X X, PAN L M. Research on influence factors of heat transfer performance of passive containment cooling system based on separated heat pipes[J]. Nuclear Safety, 2022, 21(3): 62-69. (in Chinese) |
[70] |
姜舒婷, 邹文重. 华龙一号非能动安全壳冷却系统对严重事故后果影响研究[J]. 原子能科学技术, 2022, 56(2): 374-378. JIANG S T, ZOU W Z. Study on effect of passive containment cooling system for HPR1000 on severe accident consequence[J]. Atomic Energy Science and Technology, 2022, 56(2): 374-378. (in Chinese) |
[71] |
WANG L, YANG Y P, LIU M H, et al. Transient thermal-hydraulic analysis of heat pipe cooled passive residual heat removal system of molten salt reactor[J]. International Journal of Energy Research, 2021, 45(2): 1599-1612. |
[72] |
刘逍, 王成龙, 苏光辉, 等. 多用途小型核反应堆电源热工水力设计分析[C/OL]. (2019-11-06)[2022-10-08]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CPFD&dbname=CPFDLAST2020&filename=ZKJD201911001153&uniplatform=NZKPT&v=JnJArah8unjdqGwoghe4w2ns1lkBjUmrz8hD_s7zon39MweS_ldfZKsfUtqxzK1YjjySQbEDL_0%3d. LIU X, WANG C L, SU G H, et al. Reactor core design and analysis for a micro nuclear power source[C/OL]. (2019-11-06)[2022-10-08]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CPFD&dbname=CPFDLAST2020&filename=ZKJD201911001153&uniplatform=NZKPT&v=JnJArah8unjdqGwoghe4w2ns1lkBjUmrz8hD_s7zon39MweS_ldfZKsfUtqxzK1YjjySQbEDL_0%3d. (in Chinese) |
[73] |
HU C J, WANG H Y, WU B, et al. Effect of heat pipe failure on performance of residual heat removal system with heat pipe for small lead-based reactor[J]. E3S Web of Conferences, 2021, 248: 01021. |
[74] |
XU J X, HOU M W, DING M, et al. Experimental study on separate heat pipe-type passive residual heat removal system of swimming pool-type low-temperature heating reactor[J]. Nuclear Engineering and Design, 2022, 391: 111743. |
[75] |
QIAO K, TAO H Z, LI Y N, et al. Numerical study on long-term passive heat removal of EPRHR cooling water tank (CWT) using heat pipe heat exchanger[J]. Annals of Nuclear Energy, 2022, 175: 109212. |
[76] |
LU P, YAN X D, WU R, et al. Numerical simulation and conceptual design of an MW-grade space heat pipe radiator[J/OL]. Numerical Heat Transfer, Part A: Applications. (2022-08-09)[2022-10-13]. DOI: 10.1080/10407782.2022.2107367.
|
[77] |
张昊春, 刘秀婷, 魏前明, 等. MW级空间核反应堆系统热管式辐射散热器分析及优化[J]. 原子能科学技术, 2020, 54(7): 1161-1167. ZHANG H C, LIU X T, WEI Q M, et al. Analysis and optimization of heat pipe radiation radiator for MW space nuclear reactor system[J]. Atomic Energy Science and Technology, 2020, 54(7): 1161-1167. (in Chinese) |
[78] |
张秀, 张昊春, 刘秀婷, 等. 空间核电源热管式辐射散热器热分析与参数优化[J]. 宇航学报, 2019, 40(4): 452-458. ZHANG X, ZHANG H C, LIU X T, et al. Thermal analysis and parameter optimization of a heat-pipe radiator for space nuclear power[J]. Journal of Astronautics, 2019, 40(4): 452-458. (in Chinese) |
[79] |
KOVALENKO V, KHRIPUNOV V, ANTIPENKOV A, et al. Heat-pipes-based first wall[J]. Fusion Engineering and Design, 1995, 27(1-2): 544-549. |
[80] |
DEMICK L. High temperature gas-cooled reactor projected markets and preliminary economics[R]. Idaho Falls: Idaho National Laboratory, 2011.
|
[81] |
SHOEIBI S, MIRJALILY S A A, KARGARSHARIFABAD H, et al. A comprehensive review on performance improvement of solar desalination with applications of heat pipes[J]. Desalination, 2022, 540: 115983. |
[82] |
HEGAZY A, HEGAZY M, ENGEDA A. A novel desalination system for utilizing waste heat contained in cooling salt water of a steam plant condenser[J]. Desalination, 2015, 371: 58-66. |
[83] |
TANAKA H, PARK C D. Experimental study of distiller with heat pipe utilizing waste heat from a portable electric generator[J]. Desalination, 2012, 302: 43-49. |
[84] |
GAO W Z, LI C S, XU C D, et al. Experimental study on water separation process in a novel spray flash vacuum evaporator with heat-pipe[J]. Desalination, 2016, 386: 39-47. |
[85] |
曾斌, 李言瑞, 屈凡玉, 等. 核能供热发展模式研究[J]. 能源, 2022(3): 68-71. ZENG B, LI Y R, QU F Y, et al. Research on the development model of nuclear energy heating[J]. Energy, 2022(3): 68-71. (in Chinese) |
[86] |
付嘉衡. 基于动力型热管的多能互补供热系统的性能研究[D]. 青岛: 青岛大学, 2021. FU J H. Performance research of multi-energy complementary heating system based on dynamic heat pipe[D]. Qingdao: Qingdao University, 2021. (in Chinese) |
[87] |
国家能源局. 核能供热基本原理[N/OL]. (2022-06-08)[2022-10-13]. http://www.nea.gov.cn/2022-06/08/c_1310617345.htm. National Energy Administration. Basic principles of nuclear heating[N/OL]. (2022-06-08)[2022-10-13]. http://www.nea.gov.cn/2022-06/08/c_1310617345.htm. (in Chinese) |
[88] |
ANDO M. Application of heat pipes to nuclear steel making[J]. Nuclear Engineering International, 1976, 21(244): 38-39. |