矩形通道具有结构紧凑、换热效率高等优点,被广泛应用于能源动力、石油和化工系统。在换热器和反应堆堆芯中,采用的矩形通道相互独立,在特定工况下会出现一些并联矩形通道特有的不稳定现象。文[1-6]针对均匀加热的并联矩形通道内流动不稳定性的发生机理及抑制措施进行了大量研究。王艳林等[7]基于可视化两相测量技术开展了并联矩形通道内流动不稳定性实验,结果表明:流动不稳定性边界与通道内流型的转变过程密切相关,当流动不稳定性类型为密度波型脉动时,通道出口流型为环状流,实验工况范围内不稳定性界限含气率为0。余志庭[8]以去离子水为实验工质,开展竖直静止与摇摆状态下窄矩形通道内流动不稳定性实验,获得了并联矩形通道内流动不稳定性起始点(onset of flow instability,OFI)预测关系式和流动不稳定性边界;实验中还发现,随着系统压力、质量流速、进口节流系数和入口过冷度增大,系统稳定性增强。文[9-10]以截面尺寸为50.0 mm×2.0 mm的矩形并联双通道为实验本体,开展了倾斜条件下密度波流动不稳定性实验,获得了系统压力、质量流速、入口过冷度和倾斜角度对流动不稳定性界限参数的影响规律。陈娟等[11]分别对40.0 mm× 5.0 mm和40.0 mm×10.0 mm矩形通道内的流动不稳定性进行实验,结果表明:矩形通道结构增强了流体扰动,加强了壁面传热,系统流量与压差存在反相振荡,通道尺寸减小导致通道内两相流动阻力增大,流动不稳定性的流量脉动更加剧烈。此外,文[12-14]还从两相流动沸腾压降特性方面,探索了矩形通道不稳定性产生机理。
与实验中相互独立的通道不同,实际上,换热设备或反应堆燃料组件中的并联矩形通道间相互贴合,在两侧通道传热不平衡条件下存在通道间耦合传热,这可能影响通道流动不稳定性的发生及其演化特性。Flynn等[15]利用硅结构耦合一组并联微通道,以研究通道间耦合传热对并联矩形通道不稳定性的影响规律。该研究结果表明:耦合结构可依据通道传热特性在通道间分配加热量,提高了流动稳定性。Van等[16]研究了并联微通道底部壁面导热对通道两相流动传热过程的影响,实验结果表明:壁面导热明显平抑了壁面温度波动,有效降低了低流量和干涸状态下壁温峰值,同时提高了系统稳定性。Jin等[17]的研究表明:通道间耦合传热可有效降低通道间的流量漂移,并使系统达到相对均匀的温度分布。
鉴于并联矩形通道间壁面耦合传热可能有助于提高系统稳定性,本文采用系统分析程序RELAP5对耦合与分离并联矩形通道流动不稳定性进行计算和分析,以探索耦合传热及热工参数对并联矩形通道流动不稳定性的影响规律。
1 模型建立 1.1 几何节点划分采用系统分析程序RELAP5对典型并联矩形通道进行建模,对进、出口联箱等部件进行了适当简化和阻力等效,简化的分离与耦合并联通道模型和节点如图 1所示。其中TMDV100和TMDV140为时间相关控制体,控制加热段进出口热工条件。TMDJ101为时间接管,提供加热段总体流量;PIPE110和PIPE130为进出口管段,PIPE120和PIPE121为并联加热通道。通道加热通过热构件HEAT1120和HEAT1121实现;对于耦合传热试验段,通道间导热通过热构件HEAT1123完成模拟。通道固体材料为锆合金,加热段长度为1 000.0 mm,通道横截面尺寸为40.0 mm×2.0 mm,面粗糙度为3.2×10-6 m,进口节流系数为15,出口节流系数为5。通过设置不同的热构件,模拟分离独立加热及耦合加热矩形通道流动传热特性。对于耦合传热模型,加热段热构件网格高度为40.0 mm,加热固体域厚度为2.0 mm,径向由4层网格构成。热构件内设置均匀内热源,以模拟通道热边界条件。
1.2 两相流动传热物理模型
RELAP5 /MOD3.3采用一维两流体模型分析两相流动传热问题,并进行相关计算。对于并联通道内两相流动传热过程,较为重要的模型为摩擦压降和相间传热模型。本研究先以Lockhart-Martinelli[18]模型计算单分相压降,再利用Chisholm[19]模型计算两相乘子。摩阻系数的计算则根据两相流动传热物理模型进行划分。
层流及过渡区摩阻系数λlam、λtra分别表示如下:
$ \lambda_{\text {lam }}=64 / Re, \quad 0 \leqslant Re<2\;200 ; $ | (1) |
$ \begin{gathered} \lambda_{\text {tra }}=0.184 \times(3.750-8\;250 / R e)+ \\ \quad 0.029, \quad 2\;200 \leqslant Re<3\;000 . \end{gathered} $ | (2) |
其中Re为Reynolds数。
紊流时,则利用Colebrook-White[20-21]修正关系式,紊流摩阻系数λtur表示如下:
$ \begin{gathered} \frac{1}{\sqrt{\lambda_{\text {tur }}}}=-2 \lg \left(\frac{\varepsilon}{3.70 D_{\text {hdy }}}+\frac{2.51}{R e} \times\right. \\ \left.\left(1.14-2 \lg \left(\frac{\varepsilon}{D_{\text {hdy }}}-\frac{21.25}{R e^{0.9}}\right)\right)\right), \quad R e \geqslant 3\;000 . \end{gathered} $ | (3) |
其中:ε为壁面粗糙度,Dhdy为圆管水力直径。
两相间质量交换分为相间界面质量交换与壁面传热产气两部分。相间界面质量交换率Γig表示为
$ \varGamma_{\mathrm{ig}}=-\frac{H_{\mathrm{ig}}\left(T_{\mathrm{in}}-T_{\mathrm{g}}\right)+H_{\mathrm{if}}\left(T_{\mathrm{in}}-T_{\mathrm{f}}\right)}{h_{\mathrm{g}}-h_{\mathrm{f}}} . $ | (4) |
其中:Hig为界面气相传热系数;Hif为界面液相传热系数;Tin为界面温度,Tg为气相温度,Tf为液相温度;hg为气相比焓,hf为液相比焓。
壁面传热产气率Γw表示为
$ \varGamma_{{\mathrm{w}}}=\frac{q A_{{\mathrm{w}}}}{V\left(h_{{\mathrm{g}}, {\mathrm{s}}}-h_{{\mathrm{f}}}\right)} \times \frac{h_{{\mathrm{f}}}-h_{{\mathrm{cr}}}}{\left(h_{{\mathrm{f}}, {\mathrm{s}}}-h_{{\mathrm{cr}}}\right)(1+\delta)} . $ | (5) |
其中:q为壁面热流密度;Aw为内表面积;V为控制体体积;hg, s为饱和气相比焓,hf, s为饱和液相比焓,hcr为临界比焓;δ为折算系数。
1.3 不稳定性发生与判定当流动不稳定性发生时,并联双通道密度波脉动为规则的周期性通道间流量异相脉动,脉动频率和幅度与系统运行参数有关。本研究中以并联通道间出现可辨识的连续周期性异相脉动作为流动不稳定性的起始点。流动不稳定性边界可以由无量纲相变数Npch和过冷度数Nsub表征,计算如下:
$ N_{\mathrm{pch}}=\frac{Q}{\dot{m} h_{\mathrm{fg}}} \frac{v_{\mathrm{fg}}}{v_{\mathrm{f}}}, $ | (6) |
$ N_{\mathrm{sub}}=\frac{\Delta h_{\mathrm{sub}}}{h_{\mathrm{fg}}} \frac{v_{\mathrm{fg}}}{v_{\mathrm{f}}} . $ | (7) |
其中:Q为总加热功率,
RELAP5仿真分析中,先将加热段划分为多个节点,再依次进行选代计算。模型使用的节点数量过少会导致计算结果出现偏差,而使用的节点数过多则造成计算量较大且耗时较长。为找出合适的节点数,分别将实验段划分为13、26、32、36、39、50个节点,研究系统的运行压力为10 MPa、总流量为0.14 kg/s。不同计算节点数下不稳定性界限功率计算结果如图 2所示。由图 2可知,当节点数大于26时,计算结果已趋于一致。本文综合考虑计算精度与时间,最终选择的节点数为36。
为验证建模方法及不稳定性界限功率判定的合理性,本文基于文[9-10]的实验结果,对不同入口条件下的不稳定性过程进行分析。文[9-10]中,试验段由两组独立并联的截面尺寸为50.0 mm×2.0 mm的矩形通道构成,加热长度1 000.0 mm。实验压力3~8 MPa,质量流速300~700 kg·m-2·s-1,入口过冷度40~130 ℃。选取其中10个工况的计算结果与实验数据进行对比,对比结果如图 3所示。由图 3可知,计算结果与实验数据的最大偏差为±15%,与实验数据符合较好。
3 分析与讨论 3.1 不同通道形式下典型的不稳定性现象
针对典型工况(运行压力10 MPa、入口过冷度92 ℃、总流量0.14 kg/s)对分离与耦合条件下并联通道不稳定过程进行分析。对于分离通道,分离通道流动不稳定过程中的加热功率与流量变化曲线如图 4所示。在t1=2 000 s之前,功率由100 kW按照功率台阶逐渐增加至190 kW,每次增加功率后保持功率稳定一定时间,此时系统处于稳定状态。在2 000~2 500 s,功率稳定在190 kW,总流量波动幅值略微增大至单通道流量的3%,但仍然能保持相对稳定。在2 500~3 000 s,功率由190 kW缓慢上升,热工参数达到不稳定性边界,单通道流量出现振荡并逐步增大,通道间出现反相流量脉动且脉动幅值不断增大。此时两通道流量脉动幅值相等、相位差180°,总流量则保持不变,系统处于不稳定状态。据此判定,该工况条件下不稳定性边界的界限功率为190 kW。
对于耦合通道,其加热方法与分离通道相同,耦合通道流动不稳定过程中的加热功率与流量变化曲线如图 5所示。在2 000 s之前,功率由100 kW按照功率台阶逐渐增加至190 kW,每次增加功率后保持功率稳定一定时间,加热过程中通道流量未出现波动,系统整体相比于分离通道更加稳定。在2 000~2 500 s,功率稳定在190 kW。在t2=2 170 s,单通道流量出现轻微波动,幅值为单通道流量的2%。在2 500~3 000 s,功率由190 kW缓慢上升,热工参数达到不稳定性边界,总流量出现振荡并逐步增大,通道间出现反相流量脉动且脉动幅值不断增大。此时两通道内流量脉动幅值相等、相位差180°,总流量则保持不变,系统处于不稳定状态。据此判定,该工况条件下不稳定性边界的界限功率为190 kW。在加热过程中,耦合通道流量振荡幅值小于分离通道。
图 6给出了不稳定性现象出现前,分离通道和耦合通道通道1流量变化曲线。由图 6可知,由于存在通道间传热效应,耦合通道相较于分离通道,其流动不稳定性出现前通道内流量波动幅值明显降低,同时流动不稳定性出现的时间也略微推迟。其主要原因如下:在并联通道出现流量波动后,流量较大的通道壁面温度降低,流量较小的通道壁面温度上升。对于耦合通道,壁面温度不均匀会导致发热结构内部的非对称传热,在一定程度上平衡了双面加热结构两侧壁温,最终增大了系统稳定性。由于并联通道间壁面厚度为2.0 mm,在一个周期内(2 s左右),程序计算中两侧壁温最大温差为10 ℃,壁面传热最大热流密度为100 kW/m2,通道间壁面传热量不足以弥补两侧通道不稳定条件下壁面热流密度波动值(400~600 kW/m2),因此通道间耦合传热对系统的不稳定性界限功率影响较小。
3.2 热工参数对不稳定性边界的影响
1) 流量。
图 7为流量对不稳定性界限功率的影响。耦合通道不稳定性界限功率条件:系统压力为10 MPa,入口过冷度92 ℃,总流量为0.10~0.18 kg/s。由图 7可知,随着总流量增加,界限功率增大。其主要原因如下:总流量增加,导致相同功率条件下单相传热段长度和摩擦压降占比上升,从而推迟了系统不稳定性的发生。
2) 入口过冷度。
图 8为入口过冷度对不稳定性界限功率的影响。在压力及总流量一致的情况下,耦合通道流动不稳定性界限功率随系统入口过冷度升高而增大。随着入口过冷度升高,并联矩形通道进出口流体密度差减小,加速压降减小,而重力压降、加速压降和两相摩擦压降会促使密度波不稳定性发生,从而增强并联矩形通道稳定性。
3) 压力。
压力对不稳定性界限功率的影响如图 9所示。在相同入口过冷度、总流量条件下,随着系统压力升高,界限功率增大。流体的轴向密度差是引起密度波流量振荡的主要原因,压力上升导致气液两相的密度差和运动黏度差减小,导致相同出口含气率下进出口流体的密度差减小,从而造成两相段流体加速压降和摩擦压降减小。而系统两相区域压降占比下降,单相段压降占比上升,增强了系统整体稳定性。
4 结论
本文采用系统分析程序RELAP5对耦合传热的并联矩形通道流动不稳定性进行分析,研究了矩形通道形式、系统压力、质量流量和入口过冷度对流动不稳定性界限参数的影响。研究发现:在计算工况范围内,耦合与分离通道的不稳定性界限参数相近,不稳定性发生前系统稳定性更高。对于耦合通道,热工参数对不稳定性边界的影响规律与分离通道相近,系统压力、质量流量、入口过冷度增加具有增强系统稳定性的作用。
[1] |
LEDINEGG M. Instability of flow during natural and forced circulation[J]. Die Wärme, 1938, 61(8): 891-898. |
[2] |
BOURE J A, BERGLES A E, TONG L S. Review of two-phase flow instability[J]. Nuclear Engineering and Design, 1973, 25(2): 165-192. DOI:10.1016/0029-5493(73)90043-5 |
[3] |
SAHA P, ISHII M, ZUBER N. An experimental investigation of the thermally induced flow oscillations in two-phase systems[J]. ASME Journal of Heat Transfer, 1976, 98(4): 616-622. DOI:10.1115/1.3450609 |
[4] |
FUKUDA K, KOBORI T. Classification of two-phase flow instability by density wave oscillation model[J]. Journal of Nuclear Science and Technology, 1979, 16(2): 95-108. DOI:10.1080/18811248.1979.9730878 |
[5] |
KAKAC S, BON B. A review of two-phase flow dynamic instabilities in tube boiling systems[J]. International Journal of Heat and Mass Transfer, 2008, 51(3-4): 399-433. DOI:10.1016/j.ijheatmasstransfer.2007.09.026 |
[6] |
陈冲, 高璞珍, 谭思超, 等. 窄矩形通道内Ledinegg不稳定性实验研究[J]. 原子能科学技术, 2014, 48(8): 1411-1415. CHEN C, GAO P Z, TAN S C, et al. Experimental study on Ledinegg flow instability in rectangular narrow channel[J]. Atomic Energy Science and Technology, 2014, 48(8): 1411-1415. (in Chinese) |
[7] |
王艳林, 陈炳德, 黄彦平, 等. 平行窄隙矩形通道间脉动演化过程的实验研究[J]. 核动力工程, 2011, 32(5): 75-79. WANG Y L, CHEN B D, HUANG Y P, et al. Experimental research on evolvement of density wave oscillation in parallel narrow rectangular channels[J]. Nuclear Power Engineering, 2011, 32(5): 75-79. (in Chinese) |
[8] |
余志庭. 摇摆条件下窄矩形通道内流动不稳定性研究[D]. 哈尔滨: 哈尔滨工程大学, 2016. YU Z T. Study of flow instabilities in a rectangular mini-channel under rolling motion condition[D]. Harbin: Harbin Engineering University, 2016. (in Chinese) |
[9] |
唐瑜, 陈炳德, 熊万玉, 等. 矩形并联双通道第一类密度波流动不稳定性实验研究[J]. 核动力工程, 2014, 35(3): 26-30. TANG Y, CHEN B D, XIONG W Y, et al. Experimental study on type Ⅰ density wave oscillation in parallel twin rectangular channels under forced circulation[J]. Nuclear Power Engineering, 2014, 35(3): 26-30. (in Chinese) |
[10] |
唐瑜, 陈炳德, 熊万玉, 等. 倾斜条件下并联矩形通道流动不稳定性实验研究[J]. 原子能科学技术, 2016, 50(9): 1600-1605. TANG Y, CHEN B D, XIONG W Y, et al. Experimental investigation on flow instability in parallel rectangular channel on inclined condition[J]. Atomic Energy Science and Technology, 2016, 50(9): 1600-1605. (in Chinese) |
[11] |
陈娟, 周涛, 齐实, 等. 矩形通道自然循环流动不稳定性实验研究[J]. 核动力工程, 2017, 38(2): 51-55. CHEN J, ZHOU T, QI S, et al. Experimental study of natural circulation flow instability in rectangle channels[J]. Nuclear Power Engineering, 2017, 38(2): 51-55. (in Chinese) |
[12] |
孙汝雷, 张大林, 周健成, 等. 窄矩形通道两相流动沸腾压降特性实验研究[J]. 原子能科学技术, 2020, 54(9): 1537-1549. SUN R L, ZHANG D L, ZHOU J C, et al. Experimental study on two-phase flow boiling pressure drop characteristics in narrow rectangular channel[J]. Atomic Energy Science and Technology, 2020, 54(9): 1537-1549. (in Chinese) |
[13] |
陈冲. 单矩形通道内自然循环流动特性实验研究[J]. 舰船科学技术, 2021, 43(21): 139-142. CHEN C. Experimental study on flow characteristics of natural circulation in a single rectangular channel[J]. Ship Science and Technology, 2021, 43(21): 139-142. (in Chinese) |
[14] |
吴廉巍, 陈冲, 吴炜, 等. 摇摆对窄矩形通道内流量波动特性的影响[J]. 舰船科学技术, 2021, 43(13): 74-77. WU L W, CHEN C, WU W, et al. Effects of rolling motion on fluctuation characteristics of flow rate in a rectangular narrow channel[J]. Ship Science and Technology, 2021, 43(13): 74-77. (in Chinese) |
[15] |
FLYNN R D, FOGG D W, KOO J M, et al. Boiling flow interaction between two parallel microchannels[C]//Proceedings of the ASME 2006 International Mechanical Engineering Congress and Exposition. Chicago, USA: ASME, 2006: 317-322.
|
[16] |
VAN OEVELEN T, WEIBEL J A, GARIMELLA S V. The effect of lateral thermal coupling between parallel microchannels on two-phase flow distribution[J]. International Journal of Heat and Mass Transfer, 2018, 124: 769-781. |
[17] |
JIN Q, WEN J T, NARAYANAN S. Temperature synchronization across parallel microchannels during flow boiling[J]. International Journal of Thermal Sciences, 2020, 156: 106476. |
[18] |
CHISHOLM D. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow[J]. International Journal of Heat and Mass Transfer, 1967, 10(12): 1767-1778. |
[19] |
LOCKHART R W, MARTINELLI R C. Proposed correlation of data for isothermal two-phase, two-component flow in pipes[J]. Chemical Engineering Progress, 1949, 45(1): 39-48. |
[20] |
COLEBROOK C F. Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws[J]. Journal of the Institution of Civil Engineers, 1939, 11(4): 133-156. |
[21] |
ZIGRANG D J, SYLVESTER N D. A review of explicit friction factor equations[J]. Journal of Energy Resources Technology, 1985, 107(2): 280-283. |