人类可能是“世界上最伟大的进化力量”[1]。人类活动的范围、规模、足迹和最终累积造成的污染可能会威胁和影响陆地和水生生态系统,并随着时间的推移而发生变化,给整个生态系统带来新的挑战和威胁[2]。污染是环境中的常见压力,也是当今最强大的选择因素之一[3],但人们对人为污染物如何影响生物群的适应机制知之甚少。20世纪90年代,“污染进化生态学”首次被提出,并衍生为污染生态学领域中的重要分支[4]。其目标是通过结合污染和进化的相关研究,以生物为研究对象,着眼于污染在种群水平上产生的影响以及种群与群落对于污染的响应和适应潜力[4]。
海洋是几乎所有污染物主要的汇聚地[5-7]。全球人口的增长以及工业化和城镇化,导致大量污染物如石油[8-9]、重金属[10-12]、农药[13-14]以及新兴污染物(emerging contaminants, ECs)[15-18]等通过陆地径流或污水排放口进入海洋,对沿海海洋生态系统造成严重影响。据估计,化学工业每年释放大约1 000种新型化学物质,每年至少有1亿t化学物质被释放到环境中[19]。具体来说,仅1970至2015年间,石油运输事故造成的溢油量达572万t[20],因海洋石油钻井平台事故而泄漏的石油超过145万t[21];而根据欧洲环境署的最新数据,大约75%~96% 的欧洲海域仍受到高水平的重金属污染[22];同时,沿海环境中累积的塑料垃圾量每年增加480万~1 270万t[23],超过5万亿个塑料碎片在海上漂浮[24]。更值得关注的是,最近的环境调查发现在海水或沉积物中仍可发现《斯德哥尔摩公约》所列的绝大多数污染物质和物质群(如多环芳烃、增塑剂、滴滴涕等),甚至其中不乏一些距今20年前已经被禁止的污染物[16]。事实上,海洋环境污染已成为全球环境问题[25],联合国环境规划署将海洋污染与全球气候变化等一起列为全球最紧迫的环境问题。
短期或长期的污染暴露势必对海洋生物造成持续的胁迫或选择压力。为应对这种压力,海洋生物可能会通过回避、远离、改变表型或产生遗传适应等种种生化、生理乃至个体和种群行为来做出反应[26]。在污染造成的环境压力下,海洋生物的最初响应更多地表现为如游动、警惕或逃避等行为的改变进行合理规避;但面对长期的环境污染,种群通常面临3种截然不同的结局:向更合适的栖息地迁移,通过表型可塑性调整或遗传进化以适应污染后的“新”环境,衰退直至灭绝[27]。种群如何在污染环境中的持续生存是首先被考虑的。然而环境的持续恶化使得迁移越来越困难,这意味着生物需要在当前的污染环境下做出更进一步的改变[28]。通过表型可塑性来应对似乎是最好的解决方案,这种基于个体基因型对环境产生不同表型的能力的非遗传快速反应机制[29],将使海洋生物在被污染的海洋世界中适应和生存。这些表型适应性调整可能是高度可变的,在生物的当代生命周期内甚至跨代运作[30]。同时,适应性的可塑性还可以缓冲进化与当前环境之间暂时的不匹配,通过争取时间来促进遗传适应[31],直到遗传能够进化到彻底适应新的海洋污染环境。进化原理越来越多地应用于诸如此类的挑战,被认为是当下解释已知生物适应环境的理论基础[32-33]。实际上,环境变化正是催生生物进化进而产生适应的动力或原因之一。在过去的35亿年中经历了5次大规模灭绝事件,地球上估计已进化的40亿种物种中,约有99% 已消失[34-35]。生物学家现在认为第6次大规模灭绝可能正在进行中,不同的是,这可能是第一个完全由人类造成的此类事件[36]。重大生物多样性危机发生的趋势似乎势不可挡。
人类活动对海洋的影响已被证明是巨大的[37-38],大多数已经进化出适应策略以消除或减少环境变化影响的主要为陆地生物[39]。陆地上大部分生物(如脊椎动物、无脊椎动物和植物)是从海洋生物进化而来的,但由于这些生物从海洋到陆地的过渡过程中需要适应截然不同的物理和化学环境,可能造成了海洋与陆地生物在生理构造上的相对独特性,进而在受人为环境变化(本文主要关注人为污染物)影响时两种生境下生物的响应会有一定的差异[39]。相应的,污染物在海洋环境中的来源、丰度和迁移能力等因素也有别于陆地。以微塑料(microplastic, MPs)为例,海洋环境MPs主要通过自然侵蚀和人类活动(如工业和生活废水、水产养殖、旅游业等)进入海洋[40-41],并可借助洋流实现长距离的水平移动和垂直沉降[42-43];而陆地环境MPs来源于更为广泛,包括污水污泥/生物固体、生活垃圾、施肥灌溉、塑料薄膜覆盖和轮胎磨损等[44-46],且大多数MPs沉积在垃圾填埋场,迁移能力相对较弱[47]。这些污染物的短期或长期暴露下对海洋生物已经形成了一种持续压力源,尽管人类直接或间接产生的污染物对海洋环境的威胁已被研究多年[8-18],但海洋污染是否是已经或即将引起海洋生物或至少是某些海洋生物发生进化的关键?这已成为海洋科学、环境科学与生态学的前沿问题。因此,本文提出“海洋污染进化生态学”,以污染进化生态学观点为核心,着重研究海洋生物与污染物的相互作用和进化适应潜力,以期进一步丰富海洋生态学理论与扩展学科发展空间。
1 海洋污染进化生态学的研究内容 1.1 海洋污染物对生物体的短期行为影响早期研究[48]主要阐明生物体如何对环境污染物作出反应。在相当长的一段时间里,科学家的视角主要集中在海洋污染物对生态系统成分的致死和亚致死影响[49-50]。大多数研究是通过在实验室条件下进行的短期(即“急性”)毒性测试实现的,通过测试生物体的相关生理指标,旨在确定有害物质是否影响生物体的健康,并进而评估生态系统的状态[51]。暴露时间通常为120 h或更短,用于比较不同物种对特定污染物的敏感性。
诚然,污染物对生物体生理和致死的直接影响已被纳入常规研究,但对生物体面对污染物所产生的更复杂的行为影响的研究较少。对许多物种来说,行为调整是对环境条件改变的第一反应[52]。在行为毒理学中,行为是一种生物体层面的影响,被定义为一个系统在一系列特定情况下的行动、反应或功能[53]。它是由生物体所接触的污染条件整合而成的,代表着一种急性累积效应。这种主要集中于个体的直接反应,可能影响了生物适应环境不断变化的能力并进而随之改变关键的种群生物学参数(如增长率、死亡率、迁移率等),甚至可能决定了哪些个体在变化的条件下可以生存和繁殖,从而影响作用于性状的自然选择,进而改变进化过程[29]。近年来,越来越多的研究表明,行为在使物种适应人为环境变化方面起着主导作用,并有助于解释为什么有些物种能够在人类改变的条件下生存繁衍,而其他物种则陷入困境[54-56]。同时人们已经认识到,这种行为改变很可能是由自然系统中的污染物引起的[16]。具有生态重要性的行为包括游动、警戒、分散、逃避等,这些行为的变化可能直接反映了个体或种群远离污染压力环境的初始响应[57-58]。大多数的时候,不同海洋生物个体面对污染物时表现出的生态行为响应是不同的。在行为学中,个体对不同环境条件的行为反应被称为“反应规范”(reaction norms),是由生物自身基因决定的,并综合取决于外在和内在的条件[59]。这也在多种海洋污染物的研究中得到了验证(见表 1)[60-83]。
污染物类型 | 污染物 | 暴露浓度范围 | 海洋生物 | 生物种类 | 影响生态行为 | 影响后果 | 文献 |
重金属 | 铜(Cu) | 25 mg/kg | Macomona liliana | 软体动物 | 逃避 | 远离含铜沉积物 | [60] |
无机汞(iHg) | 2 μg/L | 沙重牙鲷(Diplodus sargus) | 鱼类 | 游动 | 游动距离变短,游动速度变低 | [61] | |
铜离子(Cu2+) | 0.25 mg/ L | 孔雀锦鱼(Thalassoma pavo) | 鱼类 | 游动 | 游动减少 | [62] | |
镍离子(Ni2+) | 15 mg/L | 斑马鱼(Danio rerio) | 鱼类 | 游动 | 出现焦虑行为 | [63] | |
锰离子(Mn2+) | 4 mg/L | 斑马鱼 | 鱼类 | 游动 | 出现焦虑行为 | [64] | |
银离子(Ag+) | 30 μg/L | 斑马鱼 | 鱼类 | 游动 | 游动耐力降低 | [65] | |
石油 | 油分散剂 | 0.25 g/L | 海扇贝(Placopecten magellanicus) | 软体动物 | 警戒、逃避 | 扇贝频繁张开,振幅变大 | [66] |
残渣燃料油(heavy fuel oil, HFO) | 600、1 200、2 400、4 800 μg/g | 中间球海胆(Strongylocentrotus intermedius) | 棘皮动物 | 游动 | 覆盖能力下降,扶正速度变慢 | [67] | |
原油水溶性成分(water-soluble fraction, WSF) | 31.3%、62.5 % | 里海拟鲤(Rutilus caspicus) | 鱼类 | 游动 | 失去水平姿势和运动减少,可能有麻醉作用 | [68] | |
原油水溶性成分 | 20% | 挪威舌齿鲈(Dicentrarchus labrax) | 鱼类 | 游动 | 显著回避反应 | [69] | |
风化原油混合物 | 10 μg/L | 黑线鳕(Melano-grammus aeglefinus) | 鱼类 | 游动 | 游动能力降低 | [70] | |
农药 | 毒死蜱(chlorpyrifos) | 最高172 μg/L | 海蜗牛(Gibbula umbilicalis) | 软体动物 | 游动 | 活性和翻转行为产生显著影响 | [71] |
溴氰菊酯(deltarnethrin) | 1 ng/L | 北极虾(Pandalus borealis) | 节肢动物 | 游动 | 游动行为增加 | [72] | |
磺胺嘧啶(sulfadiazine) | 0.9、10 mg/L | 岸蟹(Carcinus maenas) | 节肢动物 | 逃避 | 移动速度降低 | [73] | |
氯氰菊酯(cypermethr) | 25 μg/L | 斑马鱼 | 鱼类 | 游动 | 出现焦虑行为,并导致运动协调性显着丧失 | [74] | |
拟除虫菊酯(pyrethroids) | 最高13 mg/L | 萨罗罗非鱼(Saro-therodon melanotheron) | 鱼类 | 游动,逃避 | 游动稳定性降低,浮出水面,过度换气 | [75] | |
新兴污染物 | 氯米帕明(clomipramine)、阿米替林(amitriptyline)和丙咪嗪(imipramine)3种抗抑郁药 | 156 μg/L | Ilyanassa obsoleta | 软体动物 | 游动 | 扶正时间明显增加 | [76] |
17α-炔雌醇(17 alpha-ethiny-lestradiol)、十二烷基硫酸钠(sodium lauryl sulfate) | 125 ng/L、4 mg/L | 紫贻贝(Mytilus galloprovincialis) | 软体动物 | 逃避 | 贝壳立即关闭 | [77] | |
2-乙基噻吩(p, p′-DDE) | 5~20 μg/L | 南极磷虾(Euphausia superba) | 节肢动物 | 游动 | 游动行为增加,随后很快下降 | [78] | |
聚丙烯微塑料(polypro-pylene MPs) | 100 μg/mL | 卤虫(Artemia salina) | 节肢动物 | 游动 | 游动速度降低 | [79] | |
氟西汀(fluoxetine) | 40.0 μg/L | 圆鰕虎鱼(Neogobius melanostomus) | 鱼类 | 游动 | 攻击性降低 | [80] | |
聚乙烯微塑料(polye-thylene MPs) | 250 mg/L | 杂色鳉(Cyprinodon variegatus) | 鱼类 | 游动 | 游动活动减少 | [81] | |
聚苯乙烯微塑料(polystyrene MPs) | 1×106微球/L | 许氏平鲉(Sebastes schlegelii) | 鱼类 | 游动 | 游动速度严重降低 | [82] | |
全氟辛烷磺酸盐(perfluorooctane sulphonate, PFOS) | 0.3、2.06 mg/L | 斑马鱼 | 鱼类 | 游动 | 游动能力降低 | [83] |
1.2 海洋污染物暴露下的表型可塑性
面对污染物时的规避远离行为通常被认为是一种低成本、快速的反应[31],往往代表生物短时间内的抵抗或生存的一种手段。然而,人类从未停下发展的脚步,这意味着污染物的影响是不断更新且复杂的。在许多情况(如日益严重的人为环境退化,有利环境越来越少;固着生物如植物、珊瑚等成年后就无法迁移等)下,这种规避污染的行为是不可行或不充分的,因此种群必须在原地做出反应[28]。一个种群如果要在新的或不断变化的环境中持续存在,表型可塑性(phenotypic plasticity)的作用不容忽视[52]。它描述了一个特定的基因型在改变的环境条件下产生不同表型的倾向(“非遗传”机制驱动),属于个体水平上的属性,但这也可能与种群层面发生的适应能力相关联[29]。从本质上讲,对于面对环境快速变化的种群,最佳解决方案可能是通过表型可塑性做出反应[84]。虽然不是所有的可塑性都是适应性的[85],但本文所关注的适应性的可塑性可以促进种群在新环境(如污染环境)中的持久性,因为它具有产生与当前环境条件相匹配的表型的独特能力[86]。且这些表型调整(基因型与环境的相互作用)可以是高度可变的,可以在生物个体的当代生命周期内甚至跨代运作[30]。
高度污染的海区提供了研究当地种群对环境变量反应的机会。多年来,人们已经认识到,代内表型可塑性(within-generation plasticity)可能在允许种群在环境快速变化的时期持续生存方面发挥重要作用[87-89]。代内可塑性使生物体能够面对变化的环境条件直接带来的挑战,并可以缓冲因环境改变对生物个体产生的负面影响[90]。如1.1节所述,长期接触污染物可能对海洋生物的自然种群产生强大的持续选择压力[91]。为了应对这种压力,海洋生物可能通过改变其宏观或微观形态、性别特异性或不同器官(发挥解毒作用为主)的转录组特征和代谢途径表达在代内做出反应(见表 2)[92-101]。同时,当适应性表型可塑性负责生物体对环境压力的反应时,这些代谢转录变化可以是完全可逆的、暂时的或可重复的[102-103]。
可塑性类型 | 污染物 | 海洋生物 | 生物种类 | 表型类型 | 跨内效应 | 文献 |
代内 | 氯化锌(ZnCl2) | Acutodesmus obliquus、Desmodesmus subspicatus、Desmodesmus armatus 3种微藻 | 藻类(浮游) | 形态改变 | 藻细胞形状改变 | [92] |
汽油 | 石莼(Ulva lactuca) | 藻类(固着) | 形态改变 | 细胞质颗粒数量增加、细胞破裂、细胞质萎缩 | [93] | |
铜 | Peramphithoe parmerong | 节肢动物 | 形态改变 | 体型变小 | [94] | |
三丁基锡(tri-n-butyltin, TBT) | 太平洋牡蛎(Crassostrea gigas) | 软体动物 | 形态改变 | 质量和长度减小,上壳瓣增厚 | [95] | |
聚氯乙烯微塑料(polyvinyl chloride MPs)浸出液 | 青灰拟球海胆(Paracentrotus lividus) | 棘皮动物 | 形态改变 | 表现出圆形表型,但缺乏完整的触手和骨骼 | [96] | |
铜 | 三刺鱼(Gasterosteus aculeatus) | 鱼类 | 性别特异性 | 接触铜1周后,鱼的耐热上限增加了约1.5 ℃,雄性具有更高的可塑性,更能适应环境条件的波动 | [97] | |
油容水部分(water accommodated fraction, WAF)、代谢抑制剂 | 杜氏藻(Dunaliella tertiolecta) | 藻类(浮游) | 代谢途径表达改变 | 三羧酸循环的通量增强,细胞外碳水化合物分泌减少 | [98] | |
痕量金属为主 | 菲律宾帘蛤(Ruditapes philippinarum) | 软体动物 | 代谢途径表达改变 | 氧化磷酸化和柠檬酸盐循环下调,但移至未污染水域后恢复正常,对化学应激的特异性反应是可逆的和暂时的 | [91] | |
多氯联苯(polychlorinated biphenyls, PCBs)、锡(Sn) | 底鳉(Fundulus heteroclitus) | 鱼类 | 代谢途径表达改变 | 脂质稳态改变,脂肪指数和肝脏甘油三酯含量升高,肝脏pparg途径基因表达明显增加以增强抵抗力 | [99] | |
西维因(carbaryl) | 底鳉 | 鱼类 | 代谢途径表达改变 | 芳烃受体(AHR)和其他代谢途径激活,并诱导提高细胞色素P450 1A(CYP1A)的活性解毒 | [100] | |
污水处理后废水(主要为咖啡因、布洛芬、萘普生等) | 头角木叶鲽(Pleuronichthys verticalis) | 鱼类 | 代谢途径表达改变 | 类固醇、脂质、谷胱甘肽和异物代谢以及免疫反应的肝脏基因表达发生了变化 | [101] |
然而,为了长期生存,种群必须通过跨代适应来应对持续的环境挑战[104]。虽然可塑性通常是针对当代所经历的环境条件而发生的,但亲代所经历的环境条件可以与子代所经历的相互作用,从而影响表型[105]。当亲代和子代环境匹配时,跨代表型可塑性(transgenerational phenotypic plasticity)可能发挥重要作用[106],因为它是一种跨代转移的表型反应,亲代与环境之间的相互作用可以通过非遗传性继承导致子代甚至后续世代的表型改变[107]。而海洋污染物在环境中是持久性存在的,对生物的长期影响常常持续到一代之后。所以,海洋生物可能通过跨代表型可塑性的演变来应对多代的污染环境。根据Neylan等[108]的观点,当污染物作为压力源时,主要有2种类型的跨代结果:污染物暴露可能会恶化亲代的生存环境,延续到下一代从而使后代的质量变低,这是一种消极负面的携带效应;另外,污染物也可以作为一种提示,使亲代为后代准备好更好地应对该压力源。在这种情况下,积极的跨代可塑性增加了后代的适应能力,因为亲代对后代可能面临的压力条件进行了补偿(如通过母体诱导或适应性匹配)[109]。目前,多代实验通过全面评估污染物对自然种群持续存在的影响,已被用于测试海洋生物如何发展对污染压力源的耐受性[110-111]。然而,确定生物应对污染压力源而产生的表型变化是由跨代可塑性还是遗传适应引起的,仅靠多代实验验证是不够的,具有一定的挑战性[112]。同时,大部分关于海洋生物应对海洋污染的跨代非遗传机制的研究主要集中在应对气候变化和海洋酸化[113-115],仅有少部分多代实验关注到了海洋污染物暴露的跨代响应(见表 3)[116-125]。表 3的结果表明处于海洋生态系统食物链低营养级生物及其后代对大部分长期存在的海洋污染物(如重金属,石油污染)已经具备一定的适应能力,但受如微纳米塑料等新兴污染物暴露的代际影响依旧明显。值得一提的是,目前的局限性在于大部分受试实验仅使用了传统的模式生物,且污染物单一,需要更多的实验关注和探究新兴污染物的混合物对常见海洋生物潜在跨代影响和作用机制。
可塑性类型 | 污染物 | 海洋生物 | 生物种类 | 对后代适应的影响 | 跨代效应 | 文献 |
跨代 | 铜 | 草苔虫(Bugula neritina) | 苔藓动物 | 积极 | 接触铜的母体产生的后代,相对于不接触铜的母体的后代,对铜的抵抗力更强 | [116] |
多环芳烃(polycyclic aromatic hydrocarbons, PAHs) | 基纳海胆(Evechinus chloroticus) | 棘皮动物 | 积极 | 海胆的母体暴露于PAHs中,通过母体的抗氧化潜力转移增强了子代对PAHs的耐受性 | [117] | |
镉(Cd) | Gammarus fossarum | 节肢动物 | 积极 | 亲代暴露引起的跨代可塑性减少了子代对镉的敏感性 | [118] | |
汞(Hg) | 虎斑猛水蚤(Tigriopus japonicus) | 节肢动物 | 积极 | 多代后可以表现出更多的潜力来适应较低汞金属暴露 | [119] | |
铜 | 安氏伪镖水蚤(Pseudod-iaptomus annandalei) | 节肢动物 | 积极 | 暴露于铜的F2—F4代的粪便颗粒和幼虫产量较低,但铜恢复组的F2—F4代的粪便颗粒和幼虫产量恢复 | [112] | |
多环芳烃芘, (PAH pyrene, 油类化合物的主要成分之一) | 双刺纺锤水蚤(Acartia tonsa) | 节肢动物 | 积极 | 子代对芘暴露的耐受性较母代增强 | [120] | |
聚苯乙烯微塑料 | 虎斑猛水蚤 | 节肢动物 | 积极 | F0—F1代在接触暴露后存活率、幼体/窝数和繁殖力的显著下降在恢复期(F2代)完全恢复 | [121] | |
质量分数分别为28%、40%、32%的聚乙烯, 聚丙烯, 聚氯乙烯微塑料混合物 | 太平洋牡蛎(Crassostrea gigas) | 软体动物 | 消极 | 长期暴露于微塑料中的母代产生的后代表现出运动能力下降、发育异常和停止以及生长迟缓 | [122] | |
聚苯乙烯微塑料 | 纹藤壶(Amphibalanus amphitrite) | 节肢动物 | 消极 | 母代接触微塑料会显著增加后代幼体的死亡率,且延迟子代的幼虫发育 | [123] | |
聚苯乙烯微塑料 | 黑点青鳉(Oryzias melastigma) | 鱼类 | 消极 | 暴露推迟了母代孵化时间,同时降低了后代的孵化率、心率和体长 | [124] | |
多氯联苯(polychlorinated biphenyls, PCBs) | 底鳉 | 鱼类 | 消极 | Bridgeport底鳉对PCB126的耐受性从母代到子代有所下降 | [125] |
1.3 海洋污染物暴露下的遗传进化
如果以拯救一个受污染物胁迫的种群为目标,那可塑性的完美性似乎可以支撑该种群在受影响的环境中无限期地生存下去。然而,这是不现实的,表型可塑性也不是万能的,因为它会受到许多限制和代价的影响[126-127]。虽然表型可塑性变化的发生不需要突变,但生物体进行塑性变化的能力有遗传基础[128]。也即是说,可塑性本身可能导致遗传进化[128]。文[31, 129]认为,可塑性发挥的作用是缓冲进化不匹配的代价,来满足种群在污染环境中持续生存,其通过争取时间使表型和环境之间更好地匹配,直到遗传能够进化到彻底适应新的海洋污染环境。进化是等位基因频率的变化,因此这必须有足够的可遗传的基因变异才能发生[129]。在污染环境中,当污染物暴露水平持续升高且造成的死亡率较高时,由于存在缺乏优势性状的表型,这可能导致种群衰退甚至灭绝[130]。此时,代内和跨代可塑性付出代价最终所产生的遗传性的适应性突变就可以推动促进种群甚至多物种群落的子代通过遗传进化更快地适应,也即是“进化拯救” [131-132]。
人们已经认识到,进化是一个当代的过程,每一代都可能会修改性状和塑造适应程度[133]。在宏观进化的时间尺度上出现的许多现象反映了地球上的早期生命进化出应对环境特征毒素(如紫外线、氧气、微生物毒素等)的机制[134-135],以及工业时代杀虫剂和抗生素的过度使用造成有害生物产生耐药性基因[136-138]。这说明在某些情况下,现存物种可能已经拥有处理接触污染物的预适应或适应能力[139]。这在海洋污染环境中同样有经典案例,如在多氯联苯长期暴露下的大西洋小鳕种群中表现出对芳香烃污染物具有遗传抗性表型[140],长期金属超标背景的冶炼厂排放点的对虾种群中检测到比无污染地点种群水平更低的遗传多样性[141],墨西哥湾原油泄漏事件后太平洋真宽水蚤种群显示出对石油污染的适应性进化[142]等。在这些案例中,一些特定的抗性基因型可以在受污染压力源影响的自然种群中被固定下来,导致局部适应,使种群在本来不适合的环境中得以持续生存。但海洋污染导致的进化过程也可能产生新的环境问题,或使现有的问题恶化。这就意味着,一些新出现的如药品与个人护理用品(pharmaceutical and personal care products, PPCPs)、MPs和人工纳米材料(manufactured nanomaterials, MNMs)[143-145]等是海洋生物过去在其环境中从未遇到过的“污染物”,而生物适应这些新兴污染物可能更具有挑战性。
遗憾的是,虽然一些海洋生物具有对少数污染物耐受性进化的遗传基础是母庸置疑的[136-137],但在大多数已有案例下,适应机制和它们的适应后果是未知的。目前,针对海洋生物对于新兴污染物暴露的影响还较多处于对行为(见表 1)和毒性后果[49-50]上的探究,有关新兴污染物的代内和跨代研究也在初期阶段,且多集中在模式生物和单一污染物暴露(见表 2和3),进化相关研究还在当代时间尺度上进行探索。这样的局限性是暂时无法避免的,但综合Hamilton等[138]总结的鱼类在化学污染物影响下遗传适应的生理机制(其并没有考虑因暴露而产生的表型反应),本文提出今后的关注点应该集中在海洋生物对新兴污染物的吸收、分布、代谢和排泄过程,产生的氧化应激和损伤修复,毒性反应的代谢成本以及繁殖或生命周期的完成时间上,找到这些过程中赋予生存或繁殖优势的性状的选择以及在种群水平上产生的相关遗传变化。因为过去的进化不太可能对新污染产生合适的反应,新的污染环境可能代表新的进化条件或压力。
同时,污染的强度、范围和持续时间是决定一个种群是否能在短期内生存或在长期内适应和进化的重要因素[26]。当前和可预见的未来,污染物在海洋环境中的分布是全球性的[146],但也存在着明显的浓度差异,污染物更可能集中沿海地区[147]。沿海地区的工业径流和废水作为海洋复杂混合污染物的源头之一,将直接导致多种污染物对海洋物种的多样化影响[147]。同时,污染物进入海洋后的追踪和监测方法[148-150]以及理解接触污染物后的生物个体或种群的健康影响的研究(见表 1—3)是单一且局限的。此外,在污染环境中的生物或种群的进化变化还取决于污染物如何破坏物种的基因库[103]。因此,基因组学工具可被用来研究海洋生物群接触污染物后的后果,并用于种群层面的长期监测[146]。基因组学数据可以提供对使适应性持续存在的遗传变化的洞察力,从而避免污染物对海洋生物群遗传多样性的侵蚀,因为这可能限制种群的长期健康。一个经典的例子是全基因组测序的运用表明占据受污染栖息地的海湾大底鳉(Fundulus grandis)的适应性毒物抗性已经迅速进化,这可能与其中一个导入的基因座包含芳香烃受体(aryl hydrocarbon receptor, AHR)的缺失,它赋予底鳉很大的适应性优势作用有关[151];除基因组工具外,某些生态学理论如食物网理论、营养级联假说、竞争排除原理、层级理论等生态学原理已经被运用在污染物运输模型、污染物造成的间接影响以及生态风险中的端点选择中[152-154]。这同样将助于更好地预测海洋生物群如何以及何时对污染物作出适应。
2 结论本文通过提出“海洋污染进化生态学”及其主要研究内容的界定,将有助于更系统地针对海洋污染物与海洋生物的相互作用开展深入研究,现有结果表明:1) 在海洋污染物的短期暴露下海洋生物表现出的最初行为改变是有差异的,且相关行为具有重要的生态意义;2) 在海洋污染物的长期暴露下一些海洋生物可以通过代内或跨代表型可塑性调整逐步适应;3) 而当海洋污染物暴露水平持续升高且造成的死亡率较高时,海洋生物可以通过遗传适应固定相关抗性基因型产生遗传进化。
“海洋污染进化生态学”的提出将更全面地识别污染引起的海洋生物行为、适应和进化机制,从而预测污染物暴露的生态后果,并确定海洋生物受海洋污染物影响后的行为改变、表型可塑性调整及遗传进化的有效性。
[1] |
PALUMBI S R. Humans as the world's greatest evolutionary force[J]. Science, 2001, 293(5536): 1786-1790. DOI:10.1126/science.293.5536.1786 |
[2] |
HALPERN B S, FRAZIER M, AFFLERBACH J, et al. Recent pace of change in human impact on the world's ocean[J]. Scientific Reports, 2019, 9(1): 11609. DOI:10.1038/s41598-019-47201-9 |
[3] |
GALLETLY B C, BLOWS M W, MARSHALL D J. Genetic mechanisms of pollution resistance in a marine invertebrate[J]. Ecological Applications, 2007, 17(8): 2290-2297. DOI:10.1890/06-2079.1 |
[4] |
王映雪. 污染生态学的新发展——污染进化生态学[J]. 云南环境科学, 1998, 17(1): 20-22. WANG Y X. New development of pollution biology-pollution evolutionary biology[J]. Yunnan Environmental Science, 1998, 17(1): 20-22. (in Chinese) |
[5] |
KLAINE S J, ALVAREZ P J J, BATLEY G E, et al. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects[J]. Environmental Toxicology and Chemistry, 2008, 27(9): 1825-1851. DOI:10.1897/08-090.1 |
[6] |
CANESI L, CIACCI C, FABBRI R, et al. Bivalve molluscs as a unique target group for nanoparticle toxicity[J]. Marine Environmental Research, 2012, 76: 16-21. DOI:10.1016/j.marenvres.2011.06.005 |
[7] |
MATRANGA V, CORSI I. Toxic effects of engineered nanoparticles in the marine environment: Model organisms and molecular approaches[J]. Marine Environmental Research, 2012, 76: 32-40. DOI:10.1016/j.marenvres.2012.01.006 |
[8] |
WANG Q Y, LV Y L, LI Q G. A review on submarine oil and gas leakage in near field: Droplets and plume[J]. Environmental Science and Pollution Research, 2022, 29(6): 8012-8025. DOI:10.1007/s11356-021-17586-0 |
[9] |
UDDIN S, FOWLER S W, SAEED T, et al. Petroleum hydrocarbon pollution in sediments from the Gulf and Omani waters: Status and review[J]. Marine Pollution Bulletin, 2021, 173: 112913. DOI:10.1016/j.marpolbul.2021.112913 |
[10] |
MADADI R, SAEEDI M, KARBASSI A. A short review of heavy metal pollution status in Musa fjord sediments[J]. Arabian Journal of Geosciences, 2020, 13(24): 1288. DOI:10.1007/s12517-020-06198-6 |
[11] |
FANG T H, LIEN C Y. Mini review of trace metal contamination status in East China Sea sediment[J]. Marine Pollution Bulletin, 2020, 152: 110874. DOI:10.1016/j.marpolbul.2019.110874 |
[12] |
MISHRA A K, FAROOQ S H. Trace metal accumulation in seagrass and saltmarsh ecosystems of India: Comparative assessment and bioindicator potential[J]. Marine Pollution Bulletin, 2022, 174: 113251. DOI:10.1016/j.marpolbul.2021.113251 |
[13] |
SOBOTKA J, LAMMEL G, SLOBODNÍK J, et al. Dynamic passive sampling of hydrophobic organic compounds in surface seawater along the South Atlantic Ocean east-to-west transect and across the Black Sea[J]. Marine Pollution Bulletin, 2021, 168: 112375. DOI:10.1016/j.marpolbul.2021.112375 |
[14] |
DROMARD C R, DEVAULT D A, BOUCHON-NAVARO Y, et al. Environmental fate of chlordecone in coastal habitats: Recent studies conducted in Guadeloupe and Martinique (Lesser Antilles)[J]. Environmental Science and Pollution Research, 2022, 29(1): 51-60. DOI:10.1007/s11356-019-04661-w |
[15] |
MERHABY D, RABODONIRINA S, NET S, et al. Overview of sediments pollution by PAHs and PCBs in mediterranean basin: Transport, fate, occurrence, and distribution[J]. Marine Pollution Bulletin, 2019, 149: 110646. DOI:10.1016/j.marpolbul.2019.110646 |
[16] |
AVELLAN A, DUARTE A, ROCHA-SANTOS T. Organic contaminants in marine sediments and seawater: A review for drawing environmental diagnostics and searching for informative predictors[J]. Science of the Total Environment, 2022, 808: 152012. DOI:10.1016/j.scitotenv.2021.152012 |
[17] |
PETERSEN F, HUBBART J A. The occurrence and transport of microplastics: The state of the science[J]. Science of the Total Environment, 2021, 758: 143936. DOI:10.1016/j.scitotenv.2020.143936 |
[18] |
RATHI B S, KUMAR P S, SHOW P L. A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research[J]. Journal of Hazardous Materials, 2021, 409: 124413. DOI:10.1016/j.jhazmat.2020.124413 |
[19] |
VITOUSEK P M, MOONEY H A, LUBCHENCO J, et al. Human domination of Earth's ecosystems[J]. Science, 1997, 277(5325): 494-499. DOI:10.1126/science.277.5325.494 |
[20] |
CHEN J H, ZHANG W P, LI S F, et al. Identifying critical factors of oil spill in the tanker shipping industry worldwide[J]. Journal of Cleaner Production, 2018, 180: 1-10. DOI:10.1016/j.jclepro.2017.12.238 |
[21] |
JERNELÖV A. The threats from oil spills: Now, then, and in the future[J]. AMBIO, 2010, 39(5): 353-366. |
[22] |
ANDERSEN J H, MURRAY C, REKER J B, et al. Contaminants in Europe's seas[R]. Copenhagen: European Environment Agency, 2019.
|
[23] |
MALLIK A, XAVIER K A M, NAIDU B C, et al. Ecotoxicological and physiological risks of microplastics on fish and their possible mitigation measures[J]. Science of the Total Environment, 2021, 779: 146433. DOI:10.1016/j.scitotenv.2021.146433 |
[24] |
ERIKSEN M, LEBRETON L C M, CARSON H S, et al. Plastic pollution in the world's oceans: More than 5 trillion plastic pieces weighing over 250, 000 tons afloat at sea[J]. PLoS One, 2014, 9(12): e111913. DOI:10.1371/journal.pone.0111913 |
[25] |
BILAL M, RASHEED T, SOSA-HERNÁNDEZ J E, et al. Biosorption: An interplay between marine algae and potentially toxic elements-A review[J]. Marine Drugs, 2018, 16(2): 65. DOI:10.3390/md16020065 |
[26] |
LORIA A, CRISTESCU M E, GONZALEZ A. Mixed evidence for adaptation to environmental pollution[J]. Evolutionary Applications, 2019, 12(7): 1259-1273. DOI:10.1111/eva.12782 |
[27] |
COFFIN J L, KELLEY J L, JEYASINGH P D, et al. Impacts of heavy metal pollution on the ionomes and transcriptomes of Western mosquitofish (Gambusia affinis)[J]. Molecular Ecology, 2022, 31(5): 1527-1542. DOI:10.1111/mec.16342 |
[28] |
GALLOWAY L F, ETTERSON J R. Transgenerational plasticity is adaptive in the wild[J]. Science, 2007, 318(5853): 1134-1136. DOI:10.1126/science.1148766 |
[29] |
THIBERT-PLANTE X, HENDRY A P. The consequences of phenotypic plasticity for ecological speciation[J]. Journal of Evolutionary Biology, 2011, 24(2): 326-342. DOI:10.1111/j.1420-9101.2010.02169.x |
[30] |
TURCOTTE M M, LEVINE J M. Phenotypic plasticity and species coexistence[J]. Trends in Ecology & Evolution, 2016, 31(10): 803-813. |
[31] |
FOX R J, DONELSON J M, SCHUNTER C, et al. Beyond buying time: The role of plasticity in phenotypic adaptation to rapid environmental change[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374(1768): 20180174. DOI:10.1098/rstb.2018.0174 |
[32] |
CARROLL S P, JØRGENSEN P S, KINNISON M T, et al. Applying evolutionary biology to address global challenges[J]. Science, 2014, 346(6207): 1245993. DOI:10.1126/science.1245993 |
[33] |
MATTHEWS B, JOKELA J, NARWANI A, et al. On biological evolution and environmental solutions[J]. Science of the Total Environment, 2020, 724: 138194. DOI:10.1016/j.scitotenv.2020.138194 |
[34] |
NOVACEK M J. The biodiversity crisis: Losing what counts[M]. New York: New Press, 2001.
|
[35] |
BARNOSKY A D, MATZKE N, TOMIYA S, et al. Has the Earth's sixth mass extinction already arrived?[J]. Nature, 2011, 471(7336): 51-57. DOI:10.1038/nature09678 |
[36] |
COWIE R H, BOUCHET P, FONTAINE B. The Sixth Mass Extinction: Fact, fiction or speculation?[J]. Biological Reviews, 2022, 97(2): 640-663. DOI:10.1111/brv.12816 |
[37] |
HALPERN B S, WALBRIDGE S, SELKOE K A, et al. A global map of human impact on marine ecosystems[J]. Science, 2008, 319(5865): 948-952. DOI:10.1126/science.1149345 |
[38] |
HALPERN B S, FRAZIER M, POTAPENKO J, et al. Spatial and temporal changes in cumulative human impacts on the world's ocean[J]. Nature Communications, 2015, 6: 7615. DOI:10.1038/ncomms8615 |
[39] |
STEELE J H, BRINK K H, SCOTT B E. Comparison of marine and terrestrial ecosystems: Suggestions of an evolutionary perspective influenced by environmental variation[J]. ICES Journal of Marine Science, 2019, 76(1): 50-59. DOI:10.1093/icesjms/fsy149 |
[40] |
GUO J J, HUANG X P, XIANG L, et al. Source, migration and toxicology of microplastics in soil[J]. Environment International, 2020, 137: 105263. DOI:10.1016/j.envint.2019.105263 |
[41] |
BIRCH Q T, POTTER P M, PINTO P X, et al. Sources, transport, measurement and impact of Nano and microplastics in urban watersheds[J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(2): 275-336. DOI:10.1007/s11157-020-09529-x |
[42] |
RYAN P G. Litter survey detects the South Atlantic 'garbage patch'[J]. Marine Pollution Bulletin, 2014, 79(1-2): 220-224. DOI:10.1016/j.marpolbul.2013.12.010 |
[43] |
JAMIESON A J, BROOKS L S R, REID W D K, et al. Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth[J]. Royal Society Open Science, 2019, 6(2): 180667. DOI:10.1098/rsos.180667 |
[44] |
LI X W, CHEN L B, MEI Q Q, et al. Microplastics in sewage sludge from the wastewater treatment plants in China[J]. Water Research, 2018, 142: 75-85. DOI:10.1016/j.watres.2018.05.034 |
[45] |
DUIS K, COORS A. Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects[J]. Environmental Sciences Europe, 2016, 28(1): 2. DOI:10.1186/s12302-015-0069-y |
[46] |
NAPPER I E, BAKIR A, ROWLAND S J, et al. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics[J]. Marine Pollution Bulletin, 2015, 99(1-2): 178-185. DOI:10.1016/j.marpolbul.2015.07.029 |
[47] |
KIRAN B R, KOPPERI H, MOHAN S V. Micro/Nano-plastics occurrence, identification, risk analysis and mitigation: Challenges and perspectives[J]. Reviews in Environmental Science and Bio/Technology, 2022, 21(1): 169-203. DOI:10.1007/s11157-021-09609-6 |
[48] |
BRADY S P, RICHARDSON J L, KUNZ B K. Incorporating evolutionary insights to improve ecotoxicology for freshwater species[J]. Evolutionary Applications, 2017, 10(8): 829-838. DOI:10.1111/eva.12507 |
[49] |
WELLS P G, DEPLEDGE M H, BUTLER J N, et al. Rapid toxicity assessment and biomonitoring of marine contaminants-exploiting the potential of rapid biomarker assays and microscale toxicity tests[J]. Marine Pollution Bulletin, 2001, 42(10): 799-804. DOI:10.1016/S0025-326X(01)00054-6 |
[50] |
BEYER J, PETERSEN K, SONG Y, et al. Environmental risk assessment of combined effects in aquatic ecotoxicology: A discussion paper[J]. Marine Environmental Research, 2014, 96: 81-91. DOI:10.1016/j.marenvres.2013.10.008 |
[51] |
HELLOU J. Behavioural ecotoxicology, an "early warning" signal to assess environmental quality[J]. Environmental Science and Pollution Research, 2011, 18(1): 1-11. DOI:10.1007/s11356-010-0367-2 |
[52] |
WONG B B M, CANDOLIN U. Behavioral responses to changing environments[J]. Behavioral Ecology, 2015, 26(3): 665-673. DOI:10.1093/beheco/aru183 |
[53] |
SIH A. Understanding variation in behavioural responses to human-induced rapid environmental change: A conceptual overview[J]. Animal Behaviour, 2013, 85(5): 1077-1088. DOI:10.1016/j.anbehav.2013.02.017 |
[54] |
TOPPING N E, VALENZUELA N. Turtle nest-site choice, anthropogenic challenges, and evolutionary potential for adaptation[J]. Frontiers in Ecology and Evolution, 2021, 9: 808621. DOI:10.3389/fevo.2021.808621 |
[55] |
LADDS M, ROSEN D, GERLINSKY C, et al. Diving deep into trouble: The role of foraging strategy and morphology in adapting to a changing environment[J]. Conservation Physiology, 2020, 8(1): coaa111. DOI:10.1093/conphys/coaa111 |
[56] |
SCOTT G R, SLOMAN K A. The effects of environmental pollutants on complex fish behaviour: Integrating behavioural and physiological indicators of toxicity[J]. Aquatic Toxicology, 2004, 68(4): 369-392. DOI:10.1016/j.aquatox.2004.03.016 |
[57] |
WERNER E E, HALL D J. Ontogenetic habitat shifts in bluegill: The foraging rate-predation risk trade-off[J]. Ecology, 1988, 69(5): 1352-1366. DOI:10.2307/1941633 |
[58] |
DOWNIE A T, ILLING B, FARIA A M, et al. Swimming performance of marine fish larvae: Review of a universal trait under ecological and environmental pressure[J]. Reviews in Fish Biology and Fisheries, 2020, 30(1): 93-108. DOI:10.1007/s11160-019-09592-w |
[59] |
PIGLIUCCI M. Phenotypic plasticity: Beyond nature and nurture[M]. Baltimore: Johns Hopkins University Press, 2001.
|
[60] |
ROPER D S, HICKEY C W. Behavioural responses of the marine bivalve Macomona liliana exposed to copper- and chlordane-dosed sediments[J]. Marine Biology, 1994, 118(4): 673-680. DOI:10.1007/BF00347515 |
[61] |
PEREIRA P, PUGA S, CARDOSO V, et al. Inorganic mercury accumulation in brain following waterborne exposure elicits a deficit on the number of brain cells and impairs swimming behavior in fish (white seabream-Diplodus sargus)[J]. Aquatic Toxicology, 2016, 170: 400-412. DOI:10.1016/j.aquatox.2015.11.031 |
[62] |
ZIZZA M, CANONACO M, FACCIOLO R M. Orexin-A rescues chronic copper-dependent behavioral and HSP90 transcriptional alterations in the ornate wrasse brain[J]. Neurotoxicity Research, 2017, 31(4): 578-589. DOI:10.1007/s12640-017-9706-0 |
[63] |
NABINGER D D, ALTENHOFEN S, BITENCOURT P E R, et al. Nickel exposure alters behavioral parameters in larval and adult zebrafish[J]. Science of the Total Environment, 2018, 624: 1623-1633. DOI:10.1016/j.scitotenv.2017.10.057 |
[64] |
RODRIGUES G Z P, STAUDT L B M, MOREIRA M G, et al. Histopathological, genotoxic, and behavioral damages induced by manganese (Ⅱ) in adult zebrafish[J]. Chemosphere, 2020, 244: 125550. DOI:10.1016/j.chemosphere.2019.125550 |
[65] |
FU C W, HORNG J L, TONG S K, et al. Exposure to silver impairs learning and social behaviors in adult zebrafish[J]. Journal of Hazardous Materials, 2021, 403: 124031. DOI:10.1016/j.jhazmat.2020.124031 |
[66] |
DURIER G, NADALINI J B, SAINT-LOUIS R, et al. Sensitivity to oil dispersants: Effects on the valve movements of the blue mussel Mytilus edulis and the giant scallop Placopecten magellanicus, in sub-arctic conditions[J]. Aquatic Toxicology, 2021, 234: 105797. DOI:10.1016/j.aquatox.2021.105797 |
[67] |
WANG X B, LI X S, XIONG D Q, et al. Effects of stranded heavy fuel oil subacute exposure on the fitness-related traits of sea urchin Strongylocentrotus intermedius[J]. Marine and Freshwater Research, 2022, 73(6): 754-761. DOI:10.1071/MF21268 |
[68] |
LARI E, ABTAHI B, HASHTROUDI M S. The effect of the water soluble fraction of crude oil on survival, physiology and behaviour of Caspian roach, Rutilus caspicus (Yakovlev, 1870)[J]. Aquatic Toxicology, 2016, 170: 330-334. DOI:10.1016/j.aquatox.2015.09.003 |
[69] |
CLAIREAUX G, QUÉAU P, MARRAS S, et al. Avoidance threshold to oil water-soluble fraction by a juvenile marine teleost fish[J]. Environmental Toxicology and Chemistry, 2018, 37(3): 854-859. DOI:10.1002/etc.4019 |
[70] |
CRESCI A, PARIS C B, BROWMAN H I, et al. Effects of exposure to low concentrations of oil on the expression of cytochrome P4501a and routine swimming speed of Atlantic haddock (Melanogrammus aeglefinus) larvae in situ[J]. Envir- onmental Science & Technology, 2020, 54(21): 13879-13887. |
[71] |
SILVA C O, NOVAIS S C, ALVES L M F, et al. Linking cholinesterase inhibition with behavioural changes in the sea snail Gibbula umbilicalis : Effects of the organophosphate pesticide chlorpyrifos[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2019, 225: 108570. |
[72] |
BAMBER S, RUNDBERGET J T, KRINGSTAD A, et al. Effects of simulated environmental discharges of the salmon lice pesticides deltamethrin and azamethiphos on the swimming behaviour and survival of adult Northern shrimp (Pandalus borealis)[J]. Aquatic Toxicology, 2021, 240: 105966. DOI:10.1016/j.aquatox.2021.105966 |
[73] |
DAMASCENO J M, RATO L D, SIMÕES T, et al. Exposure to the insecticide sulfoxaflor affects behaviour and biomarkers responses of Carcinus maenas (Crustacea: Decapoda)[J]. Biology, 2021, 10(12): 1234. DOI:10.3390/biology10121234 |
[74] |
NEMA S, BHARGAVA Y. Quantitative assessment of cypermethrin induced behavioural and biochemical anomalies in adult zebrafish[J]. Neurotoxicology and Teratology, 2018, 68: 57-65. DOI:10.1016/j.ntt.2018.05.003 |
[75] |
ALALIBO K, PATRICIA U A, RANSOME D E. Effects of Lambda Cyhalothrin on the behaviour and histology of gills of Sarotherodon melanotheron in brackish water[J]. Scientific African, 2019, 6: e00178. DOI:10.1016/j.sciaf.2019.e00178 |
[76] |
FONG P P, DIPENTA K E, JONIK S M, et al. Short-term exposure to tricyclic antidepressants delays righting time in marine and freshwater snails with evidence for low-dose stimulation of righting speed by imipramine[J]. Environmental Science and Pollution Research, 2019, 26(8): 7840-7846. DOI:10.1007/s11356-019-04269-0 |
[77] |
LOPES J, COPPOLA F, RUSSO T, et al. Behavioral, physiological and biochemical responses and differential gene expression in Mytilus galloprovincialis exposed to 17 alpha-ethinylestradiol and sodium lauryl sulfate[J]. Journal of Hazardous Material, 2022, 426: 128058. DOI:10.1016/j.jhazmat.2021.128058 |
[78] |
POULSEN A H, KAWAGUCHI S, KING C K, et al. Behavioural sensitivity of a key Southern Ocean species (Antarctic krill, Euphausia superba) to p, p'-DDE exposure[J]. Ecotoxicology and Environmental Safety, 2012, 75(1): 163-170. |
[79] |
JEYAVANI J, SIBIYA A, BHAVANIRAMYA S, et al. Toxicity evaluation of polypropylene microplastic on marine microcrustacean Artemia salina: An analysis of implications and vulnerability[J]. Chemosphere, 2022, 296: 133990. DOI:10.1016/j.chemosphere.2022.133990 |
[80] |
MCCALLUM E S, BOSE A P H, WARRINER T R, et al. An evaluation of behavioural endpoints: The pharmaceutical pollutant fluoxetine decreases aggression across multiple contexts in round goby (Neogobius melanostomus)[J]. Chemosphere, 2017, 175: 401-410. DOI:10.1016/j.chemosphere.2017.02.059 |
[81] |
CHOI J S, JUNG Y J, HONG N H, et al. Toxicological effects of irregularly shaped and spherical microplastics in a marine teleost, the sheepshead minnow (Cyprinodon Variegatus)[J]. Marine Pollution Bulletin, 2018, 129(1): 231-240. DOI:10.1016/j.marpolbul.2018.02.039 |
[82] |
YIN L Y, CHEN B J, XIA B, et al. Polystyrene microplastics alter the behavior, energy reserve and nutritional composition of marine jacopever (Sebastes schlegelii)[J]. Journal of Hazardous Materials, 2018, 360: 97-105. DOI:10.1016/j.jhazmat.2018.07.110 |
[83] |
CHRISTOU M, ROPSTAD E, BROWN S, et al. Developmental exposure to a POPs mixture or PFOS increased body weight and reduced swimming ability but had no effect on reproduction or behavior in zebrafish adults[J]. Aquatic Toxicology, 2021, 237: 105882. DOI:10.1016/j.aquatox.2021.105882 |
[84] |
DIAMOND S E, MARTIN R A. The interplay between plasticity and evolution in response to human-induced environmental change[J]. F1000Research, 2016, 5: 2835. DOI:10.12688/f1000research.9731.1 |
[85] |
ACASUSO-RIVERO C, MURREN C J, SCHLICHTING C D, et al. Adaptive phenotypic plasticity for life-history and less fitness-related traits[J]. Proceedings of the Royal Society B: Biological Sciences, 2019, 286(1904): 20190653. DOI:10.1098/rspb.2019.0653 |
[86] |
HARMON E A, PFENNIG D W. Evolutionary rescue via transgenerational plasticity: Evidence and implications for conservation[J]. Evolution & Development, 2021, 23(4): 292-307. |
[87] |
BALDWIN J M. A new factor in evolution[J]. The American Naturalist, 1896, 30(354): 441-451. DOI:10.1086/276408 |
[88] |
CHARMANTIER A, MCCLEERY R H, COLE L R, et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population[J]. Science, 2008, 320(5877): 800-803. DOI:10.1126/science.1157174 |
[89] |
NICOTRA A B, ATKIN O K, BONSER S P, et al. Plant phenotypic plasticity in a changing climate[J]. Trends in Plant Science, 2010, 15(12): 684-692. DOI:10.1016/j.tplants.2010.09.008 |
[90] |
CROZIER L G, HENDRY A P, LAWSON P W, et al. Potential responses to climate change in organisms with complex life histories: Evolution and plasticity in Pacific salmon[J]. Evolutionary Applications, 2008, 1(2): 252-270. DOI:10.1111/j.1752-4571.2008.00033.x |
[91] |
IANNELLO M, MEZZELANI M, DALLA ROVERE G, et al. Long-lasting effects of chronic exposure to chemical pollution on the hologenome of the Manila clam[J]. Evolutionary Applications, 2021, 14(12): 2864-2880. DOI:10.1111/eva.13319 |
[92] |
GUCLU Z, ERTAN O O. Toxicity and removal of zinc in the three species (Acutodesmus obliquus, Desmodesmus subspicatus and Desmodesmus armatus) belonging to the family, Scenedesmaceae (Chlorophyta)[J]. Turkish Journal of Fisheries and Aquatic Sciences, 2012, 12(2): 309-314. |
[93] |
PILATTI F K, RAMLOV F, SCHMIDT E C, et al. In vitro exposure of Ulva lactuca Linnaeus (Chlorophyta) to gasoline-biochemical and morphological alterations[J]. Chemosphere, 2016, 156: 428-437. DOI:10.1016/j.chemosphere.2016.04.126 |
[94] |
PEASE C J, JOHNSTON E L, POORE A G B. Genetic variability in tolerance to copper contamination in a herbivorous marine invertebrate[J]. Aquatic Toxicology, 2010, 99(1): 10-16. DOI:10.1016/j.aquatox.2010.03.014 |
[95] |
WALDOCK M J, THAIN J E. Shell thickening in Crassostrea gigas: Organotin antifouling or sediment induced?[J]. Marine Pollution Bulletin, 1983, 14(11): 411-415. DOI:10.1016/0025-326X(83)90445-9 |
[96] |
RENDELL-BHATTI F, PAGANOS P, POUCH A, et al. Developmental toxicity of plastic leachates on the sea urchin Paracentrotus lividus[J]. Environmental Pollution, 2021, 269: 115744. DOI:10.1016/j.envpol.2020.115744 |
[97] |
MOTTOLA G, NIKINMAA M, ANTTILA K. Copper exposure improves the upper thermal tolerance in a sex-specific manner, irrespective of fish thermal history[J]. Aquatic Toxicology, 2022, 246: 106145. DOI:10.1016/j.aquatox.2022.106145 |
[98] |
KAMALANATHAN M, MAPES S, PROUSE A, et al. Core metabolism plasticity in phytoplankton: Response of Dunaliella tertiolecta to oil exposure[J]. Journal of Phycology, 2022, 58(6): 804-814. DOI:10.1111/jpy.13286 |
[99] |
CRAWFORD K A, CLARK B W, HEIGER-BERNAYS W J, et al. Altered lipid homeostasis in a PCB-resistant Atlantic killifish (Fundulus heteroclitus) population from New Bedford Harbor, MA, USA[J]. Aquatic Toxicology, 2019, 210: 30-43. DOI:10.1016/j.aquatox.2019.02.011 |
[100] |
OZIOLOR E M, HOWARD W, LAVADO R, et al. Induced pesticide tolerance results from detoxification pathway priming[J]. Environmental Pollution, 2017, 224: 615-621. DOI:10.1016/j.envpol.2017.02.046 |
[101] |
VIDAL-DORSCH D E, BAY S M, RIBECCO C, et al. Genomic and phenotypic response of hornyhead turbot exposed to municipal wastewater effluents[J]. Aquatic Toxicology, 2013, 140-141: 174-184. DOI:10.1016/j.aquatox.2013.05.017 |
[102] |
HODGINS-DAVIS A, TOWNSEND J P. Evolving gene expression: From G to E to G×E[J]. Trends in Ecology & Evolution, 2009, 24(12): 649-658. |
[103] |
WHITEHEAD A, CLARK B W, REID N M, et al. When evolution is the solution to pollution: Key principles, and lessons from rapid repeated adaptation of killifish (Fundulus heteroclitus) populations[J]. Evolutionary Applications, 2017, 10(8): 762-783. DOI:10.1111/eva.12470 |
[104] |
BAUTISTA N M, CRESPEL A. Within- and trans- generational environmental adaptation to climate change: Perspectives and new challenges[J]. Frontiers in Marine Science, 2021, 8: 729194. DOI:10.3389/fmars.2021.729194 |
[105] |
DONELSON J M, SALINAS S, MUNDAY P L, et al. Transgenerational plasticity and climate change experiments: Where do we go from here?[J]. Global Change Biology, 2018, 24(1): 13-34. DOI:10.1111/gcb.13903 |
[106] |
ENGQVIST L, REINHOLD K. Adaptive trans-generational phenotypic plasticity and the lack of an experimental control in reciprocal match/mismatch experiments[J]. Methods in Ecology and Evolution, 2016, 7(12): 1482-1488. DOI:10.1111/2041-210X.12618 |
[107] |
SALINAS S, BROWN S C, MANGEL M, et al. Non-genetic inheritance and changing environments[J]. Non-Genetic Inheritance, 2013, 1: 38-50. |
[108] |
NEYLAN I P, SIH A, STACHOWICZ J J. Local adaptation in the transgenerational response to copper pollution in the bryozoan Bugula neritina[J]. Ecology and Evolution, 2022, 12(11): e9524. DOI:10.1002/ece3.9524 |
[109] |
SOBRAL M, SAMPEDRO L, NEYLAN I, et al. Phenotypic plasticity in plant defense across life stages: Inducibility, transgenerational induction, and transgenerational priming in wild radish[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(33): e2005865118. |
[110] |
ROMERO-LOPEZ J, LOPEZ-RODAS V, COSTAS E. Estimating the capability of microalgae to physiological acclimatization and genetic adaptation to petroleum and diesel oil contamination[J]. Aquatic Toxicology, 2012, 124-125: 227-237. DOI:10.1016/j.aquatox.2012.08.001 |
[111] |
DAO T S, VO T M C, WIEGAND C, et al. Transgenerational effects of cyanobacterial toxins on a tropical micro-crustacean Daphnia lumholtzi across three generations[J]. Environmental Pollution, 2018, 243: 791-799. DOI:10.1016/j.envpol.2018.09.055 |
[112] |
DINH K V, DINH H T, PHAM H T, et al. Development of metal adaptation in a tropical marine zooplankton[J]. Scientific Reports, 2020, 10(1): 10212. DOI:10.1038/s41598-020-67096-1 |
[113] |
DONELSON J M, MUNDAY P L, MCCORMICK M I, et al. Rapid transgenerational acclimation of a tropical reef fish to climate change[J]. Nature Climate Change, 2012, 2(1): 30-32. DOI:10.1038/nclimate1323 |
[114] |
THOR P, DUPONT S. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod[J]. Global Change Biology, 2015, 21(6): 2261-2271. DOI:10.1111/gcb.12815 |
[115] |
BYRNE M, FOO S A, ROSS P M, et al. Limitations of cross- and multigenerational plasticity for marine invertebrates faced with global climate change[J]. Global Change Biology, 2020, 26(1): 80-102. DOI:10.1111/gcb.14882 |
[116] |
MARSHALL D J. Transgenerational plasticity in the sea: Context-dependent maternal effects across the life history[J]. Ecology, 2008, 89(2): 418-427. DOI:10.1890/07-0449.1 |
[117] |
LISTER K N, LAMARE M D, BURRITT D J. Maternal antioxidant provisioning mitigates pollutant-induced oxidative damage in embryos of the temperate sea urchin Evechinus chloroticus[J]. Scientific Reports, 2017, 7(1): 1954. DOI:10.1038/s41598-017-02077-5 |
[118] |
VIGNERON A, GEFFARD O, QUÉAU H, et al. Nongenetic inheritance of increased Cd tolerance in a field Gammarus fossarum population: Parental exposure steers offspring sensitivity[J]. Aquatic Toxicology, 2019, 209: 91-98. DOI:10.1016/j.aquatox.2019.02.001 |
[119] |
LI H Y, SHI L, WANG D Z, et al. Impacts of mercury exposure on life history traits of Tigriopus japonicus: Multigeneration effects and recovery from pollution[J]. Aquatic Toxicology, 2015, 166: 42-49. DOI:10.1016/j.aquatox.2015.06.015 |
[120] |
KRAUSE K E, DINH K V, NIELSEN T G. Increased tolerance to oil exposure by the cosmopolitan marine copepod Acartia tonsa[J]. Science of the Total Environment, 2017, 607-608: 87-94. DOI:10.1016/j.scitotenv.2017.06.139 |
[121] |
ZHANG C, JEONG C B, LEE J S, et al. Transgenerational proteome plasticity in resilience of a marine copepod in response to environmentally relevant concentrations of microplastics[J]. Environmental Science & Technology, 2019, 53(14): 8426-8436. |
[122] |
BRINGER A, CACHOT J, DUBILLOT E, et al. Intergenerational effects of environmentally-aged microplastics on the Crassostrea gigas[J]. Environmental Pollution, 2022, 294: 118600. DOI:10.1016/j.envpol.2021.118600 |
[123] |
YU S P, CHAN B K K. Intergenerational microplastics impact the intertidal barnacle Amphibalanus amphitrite during the planktonic larval and benthic adult stages[J]. Environmental Pollution, 2020, 267: 115560. DOI:10.1016/j.envpol.2020.115560 |
[124] |
WANG J, LI Y J, LU L, et al. Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma)[J]. Environmental Pollution, 2019, 254: 113024. DOI:10.1016/j.envpol.2019.113024 |
[125] |
NACCI D E, CHAMPLIN D, JAYARAMAN S. Adaptation of the estuarine fish Fundulus heteroclitus (Atlantic Killifish) to Polychlorinated Biphenyls (PCBs)[J]. Estuaries and Coasts, 2010, 33(4): 853-864. DOI:10.1007/s12237-009-9257-6 |
[126] |
DEWITT T J. Costs and limits of phenotypic plasticity: Tests with predator-induced morphology and life history in a freshwater snail[J]. Journal of Evolutionary Biology, 1998, 11(4): 465-480. |
[127] |
VAN BUSKIRK J, STEINER U K. The fitness costs of developmental canalization and plasticity[J]. Journal of Evolutionary Biology, 2009, 22(4): 852-860. DOI:10.1111/j.1420-9101.2009.01685.x |
[128] |
HO W C, LI D Y, ZHU Q, et al. Phenotypic plasticity as a long-term memory easing readaptations to ancestral environments[J]. Science Advances, 2020, 6(21): eaba3388. DOI:10.1126/sciadv.aba3388 |
[129] |
GHALAMBOR C K, MCKAY J K, CARROLL S P, et al. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments[J]. Functional Ecology, 2007, 21(3): 394-407. DOI:10.1111/j.1365-2435.2007.01283.x |
[130] |
HENDRY A P, GONZALEZ A. Whither adaptation?[J]. Biology & Philosophy, 2008, 23(5): 673-699. |
[131] |
BELL G, GONZALEZ A. Evolutionary rescue can prevent extinction following environmental change[J]. Ecology Letters, 2009, 12(9): 942-948. DOI:10.1111/j.1461-0248.2009.01350.x |
[132] |
LOW-DÉCARIE E, KOLBER M, HOMME P, et al. Community rescue in experimental metacommunities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(46): 14307-14312. |
[133] |
CARROLL S P, HENDRY A P, REZNICK D N, et al. Evolution on ecological time-scales[J]. Functional Ecology, 2007, 21(3): 387-393. DOI:10.1111/j.1365-2435.2007.01289.x |
[134] |
COCKELL C S. Biological effects of high ultraviolet radiation on early Earth-a theoretical evaluation[J]. Journal of Theoretical Biology, 1998, 193(4): 717-729. DOI:10.1006/jtbi.1998.0738 |
[135] |
KIRSCHVINK J L, KOPP R E. Palaeoproterozoic ice houses and the evolution of oxygen-mediating enzymes: The case for a late origin of photosystem Ⅱ[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363(1504): 2755-2765. DOI:10.1098/rstb.2008.0024 |
[136] |
MEDINA M H, CORREA J A, BARATA C. Micro-evolution due to pollution: Possible consequences for ecosystem responses to toxic stress[J]. Chemosphere, 2007, 67(11): 2105-2114. DOI:10.1016/j.chemosphere.2006.12.024 |
[137] |
PALMER A C, KISHONY R. Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance[J]. Nature Reviews Genetics, 2013, 14(4): 243-248. DOI:10.1038/nrg3351 |
[138] |
HAMILTON P B, ROLSHAUSEN G, WEBSTER T M U, et al. Adaptive capabilities and fitness consequences associated with pollution exposure in fish[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372(1712): 20160042. DOI:10.1098/rstb.2016.0042 |
[139] |
LLEWELYN J, PHILLIPS B L, BROWN G P, et al. Adaptation or preadaptation: Why are keelback snakes (Tropidonophis mairii) less vulnerable to invasive cane toads (Bufo marinus) than are other Australian snakes?[J]. Evolutionary Ecology, 2011, 25(1): 13-24. DOI:10.1007/s10682-010-9369-2 |
[140] |
WIRGIN I, WALDMAN J R. Resistance to contaminants in North American fish populations[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 552(1-2): 73-100. DOI:10.1016/j.mrfmmm.2004.06.005 |
[141] |
ROSS K, COOPER N, BIDWELL J R, et al. Genetic diversity and metal tolerance of two marine species: A comparison between populations from contaminated and reference sites[J]. Marine Pollution Bulletin, 2002, 44(7): 671-679. DOI:10.1016/S0025-326X(01)00333-2 |
[142] |
LEE C E, REMFERT J L, OPGENORTH T, et al. Evolutionary responses to crude oil from the deepwater horizon oil spill by the copepod Eurytemora affinis[J]. Evolutionary Applications, 2017, 10(8): 813-828. DOI:10.1111/eva.12502 |
[143] |
顾世民, 刘伟, 田胜艳, 等. 人工纳米材料对海洋生态系统的潜在生态风险[J]. 海洋信息, 2013, 28(4): 27-30. GU S M, LIU W, TIAN S Y, et al. Potential ecological risks of artificial nanomaterials to marine ecosystems[J]. Marine Information, 2013, 28(4): 27-30. DOI:10.3969/j.issn.1005-1724.2013.04.006 (in Chinese) |
[144] |
BRANDON J A, JONES W, OHMAN M D. Multidecadal increase in plastic particles in coastal ocean sediments[J]. Science Advances, 2019, 5(9): eaax0587. DOI:10.1126/sciadv.aax0587 |
[145] |
JACQUIN L, PETITJEAN Q, CÔTE J, et al. Effects of pollution on fish behavior, personality, and cognition: Some research perspectives[J]. Frontiers in Ecology and Evolution, 2020, 8: 86. DOI:10.3389/fevo.2020.00086 |
[146] |
REID N M, WHITEHEAD A. Functional genomics to assess biological responses to marine pollution at physiological and evolutionary timescales: Toward a vision of predictive ecotoxicology[J]. Briefings in Functional Genomics, 2016, 15(5): 358-364. DOI:10.1093/bfgp/elv060 |
[147] |
ALTER S E, TARIQ L, CREED J K, et al. Evolutionary responses of marine organisms to urbanized seascapes[J]. Evolutionary Applications, 2021, 14(1): 210-232. DOI:10.1111/eva.13048 |
[148] |
KARL M, PIRJOLA L, KARPPINEN A, et al. Modeling of the concentrations of ultrafine particles in the plumes of ships in the vicinity of major harbors[J]. International Journal of Environmental Research and Public Health, 2020, 17(3): 777. DOI:10.3390/ijerph17030777 |
[149] |
FORT J, MOE B, STRØM H, et al. Multicolony tracking reveals potential threats to little auks wintering in the North Atlantic from marine pollution and shrinking sea ice cover[J]. Diversity and Distributions, 2013, 19(10): 1322-1332. DOI:10.1111/ddi.12105 |
[150] |
PILECHI A, MOHAMMADIAN A, MURPHY E. A numerical framework for modeling fate and transport of microplastics in inland and coastal waters[J]. Marine Pollution Bulletin, 2022, 184: 114119. DOI:10.1016/j.marpolbul.2022.114119 |
[151] |
OZIOLOR E M, REID N M, YAIR S, et al. Adaptive introgression enables evolutionary rescue from extreme environmental pollution[J]. Science, 2019, 364(6439): 455-457. DOI:10.1126/science.aav4155 |
[152] |
COURTNEY L A, CLEMENTS W H. Sensitivity to acidic pH in benthic invertebrate assemblages with different histories of exposure to metals[J]. Journal of the North American Benthological Society, 2000, 19(1): 112-127. DOI:10.2307/1468285 |
[153] |
BLAIS J M, KIMPE L E, MCMAHON D, et al. Arctic seabirds transport marine-derived contaminants[J]. Science, 2005, 309(5733): 445. DOI:10.1126/science.1112658 |
[154] |
SONDEREGGER D L, WANG H N, CLEMENTS W H, et al. Using SiZer to detect thresholds in ecological data[J]. Frontiers in Ecology and the Environment, 2009, 7(4): 190-195. DOI:10.1890/070179 |