氯化铷添加剂对钙钛矿太阳能电池性能的影响
高宇, 张衍国, 周会, 李清海    
清华大学 能源与动力工程系, 热科学与动力工程教育部重点实验室, 北京 100084
摘要:在钙钛矿前驱体溶液中加入添加剂,是改善钙钛矿薄膜质量、提高钙钛矿太阳能电池性能的重要手段。该研究采用氯化铷(RbCl)作为添加剂,通过扫描电子显微图像、X射线衍射图谱、光致发光光谱等表征手段,研究了不同比例添加RbCl对钙钛矿薄膜形貌与结构的影响,并通过外量子效率测试等方法,比较了不同比例RbCl添加后的钙钛矿太阳能电池器件性能。结果表明:RbCl的添加有利于引导钙钛矿晶粒生长,增大晶粒尺度,形成致密薄膜,从而抑制界面处载流子复合。适量添加RbCl后,钙钛矿太阳能电池的光电转化效率从18.88%提升到20.06%,开路电压、短路电流密度和填充因子等参数均显著提高,钙钛矿太阳能电池性能得到明显改善。
关键词钙钛矿太阳能电池    氯化铷    添加剂    钙钛矿薄膜    晶粒尺寸    
Effects of RbCl additive on performance of perovskite solar cells
GAO Yu, ZHANG Yanguo, ZHOU Hui, LI Qinghai    
Key Laboratory for Thermal Science and Power Engineering ofministry of Education, Department of Energy and Power Engineering, Beijing 100084, China
Abstract: [Objective] Perovskite solar cells have drawn considerable attention in recent years. The addition of additives to perovskite precursor solutions is an important method to improve the quality of perovskite films for enhancing the performance of perovskite solar cells. In the past, alkali metal ions were extensively used as additives. Rubidium ions (Rb+) were generally added into perovskite films alongside other kinds of cations, following which the photovoltaic performance of the solar cells was clearly improved. However, few researchers studied the effects of only adding various proportions of Rb+ on perovskite films. In this study, rubidium chloride (RbCl) was used as an additive in perovskite precursor solutions and the morphology and structure of perovskite films were analyzed. [Methods] Perovskite films were fabricated using a two-step method. RbCl was used as an additive into lead (II) iodide (PbI2) precursor solutions with the RbCl proportions 2%, 4%, 6%, 8%, 10%, and 12% versus PbI2, and a PbI2 precursor solution with no RbCl added was used as the control. Scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were employed to analyze the difference in surface morphology and structure of the perovskite films. Steady-state photoluminescence (SSPL) and time-resolved photoluminescence (TRPL) spectra were recorded using devices of fluorine-doped tin oxide (FTO)/SnO2/perovskite films to study the carrier-transporting properties. The photovoltaic performances of the perovskite solar cells were studied through a solar simulator and external quantum efficiency testing. UV-visible (UV-vis) absorption spectra were recorded to explore the change in light absorption. [Results] The crystalline grain size is clearly enhanced upon adding 4% RbCl. The grain size is 1.61 μm in the control and 2.14 μm upon adding 4% RbCl. However, a high addition proportion (>8%) damages and distorts the crystal structure, decreasing the film quality. Adding RbCl at a low proportion is beneficial for guiding the growth of perovskite grains, increasing grain size, and forming a dense film with fewer holes. The XRD patterns reveal that the peak at 12.6° corresponding to PbI2 is suppressed upon adding RbCl, whereas a new peak appears at 11.3°. The suppression of the PbI2 peak and the appearance of the new peak can be attributed to the formation of the RbCl complex and excessive PbI2, and the complex can be observed in the SEM images, which is confirmed by EDS results. The TRPL results reveal that adding RbCl at a low proportion enhances the transport and extraction of charge carriers, which is consistent with the SSPL results. Furthermore, the photovoltaic performance results reveal that with RbCl as an additive, the photoelectric conversion efficiency of the perovskite solar cells increases from 18.88% to 20.06%, and photoelectric properties such as open-circuit voltage, short-circuit current density, and filling factor are considerably improved. However, the UV-vis absorption spectra show that the absorption is not improved upon adding RbCl and even decreases with a high addition proportion, which is due to the increasing roughness of the perovskite films with increasing RbCl proportion. The enhancement of the photoelectric properties is due to the increase in transport and extraction of charge carriers caused by the improvement in film quality. [Conclusions] This research demonstrates that adding RbCl at low proportions can enhance the grain size and transport of the carriers, improving the photovoltaic performance. The optimal RbCl addition proportion is ~4%. This study has considerable potential for improving the performance of perovskite solar cells.
Key words: perovskite solar cells    rubidium chloride    additives    perovskite thin film    grain size    

近年来,能源枯竭与环境污染等问题日益严峻[1],清洁能源的发展迫在眉睫。太阳能是一种储量庞大的可再生能源,对于解决化石能源危机具有重要意义[2]。以钙钛矿材料作为吸光层的太阳能电池(perovskite solar cells, PSCs)因其光电转化效率高、成本低、带隙可调,以及易于大面积制造等优点备受关注,短短几年间其光电转化效率从3.8%迅速提升至26.1%[3-6]

钙钛矿薄膜作为吸光层,其质量是影响钙钛矿太阳能电池性能的重要因素[7-8]。在钙钛矿前驱体溶液中加入添加剂,调控晶体生长、钝化薄膜缺陷,可以有效改善钙钛矿薄膜质量[9-11]。研究表明,引入碱金属离子作为添加剂可以提高钙钛矿薄膜结晶度与晶粒尺寸[12]。Zhao等[13]在MAPbI3钙钛矿薄膜中引入钾离子(K+),发现K+主要占据钙钛矿晶格的间隙位置,钙钛矿薄膜的结晶度增加,光致发光(photoluminescence, PL)光谱红移,并且表面电势降低,因此载流子分离性能提高,太阳能电池器件中的电荷复合减少。Yao等[14]在合成MAPbI3的碘化铅(PbI2)前驱体溶液中引入碘化钾(KI),发现K+的引入可以将钙钛矿薄膜从n型调制为p型,提高空穴浓度,增强光吸收。Zhou等[15]研究了不同浓度的K+添加对钙钛矿薄膜的晶粒尺寸、晶界和光物理性能的影响,发现低质量浓度(10 mg/mL)添加可以钝化晶粒、减少薄膜缺陷。Enomoto等[16]在钙钛矿结构B位引入铜离子(Cu2+)的同时,在A位引入K+,以抑制甲胺离子(MA+)的解吸附作用,进而抑制晶体分解,提高了薄膜的稳定性。Machiba等[17]以添加K+的MA0.8FA0.1K0.1PbI3(Cl) 前驱体溶液制备了钙钛矿太阳能电池,发现溶液中的K+促进了钙钛矿晶粒的生长,并占据了钙钛矿晶格中的缺陷,导致晶格常数增大,提高了光电转化效率。罗烈升等[18]对无机钙钛矿CsPbIBr2薄膜进行了K+的添加,同样实现了增大晶粒尺寸、提高吸光性能的效果。Zhang等[19]将铷离子(Rb+)引入钙钛矿薄膜,发现Rb+并未完全进入钙钛矿晶格,少量的Rb+添加可以提升器件的光伏性能,将器件效率从14.9%提升至16.2%。曹冰冰[20]发现,Rb+和K+的混合添加可以起到增大钙钛矿晶粒、改善电荷传输的作用,相对于未添加器件,Rb/K添加比例为1∶4时,可将器件效率相对提高近10%。Zhao等[21]通过引入Rb+, 将PbI2转化为非活性(PbI2)2RbCl,提高了FAPbI3钙钛矿晶相的稳定性,并且相对于未添加Rb+的太阳能电池,添加Rb+的器件具有更高的开路电压、短路电流密度和填充因子,因此其光电转化效率显著提升。Namvar等[22]在FA0.83MA0.17Pb (I0.83Br0.17)3钙钛矿薄膜中引入钠离子(Na+)、铯离子(Cs+),减少了钙钛矿薄膜孔洞,获得了效率更高的器件。Ueoka等[23]在添加CuBr2改性的MAPbI3-δClδ薄膜中引入不同种类的碱金属离子(Na+、K+、Rb+和Cs+等)并进行对比,结果表明将Cu和Rb元素混合添加入钙钛矿晶体,可降低钙钛矿结构的Gibbs自由能和串联电阻,提高钙钛矿结构的稳定性,并且可以有效提升器件光伏性能。此后他们还发现[24],在(CH3NH3)0.99Rb0.01Pb0.99 Cu0.01I3-x(Cl, Br)x薄膜中引入Na+,可以减小载流子陷阱密度,抑制晶格缺陷。李玉娇[25]发现,利用锂离子(Li+)、Na+添加可将钙钛矿薄膜调制为p型,并且有利于增大晶粒尺寸、优化载流子传输特性、提高器件光伏性能。可见,在钙钛矿薄膜中添加碱金属离子可有效改善薄膜形貌,提高器件性能。但目前大多数研究仅着眼于添加K+,对于其他碱金属离子添加对钙钛矿薄膜的影响较少关注,如Rb+离子。尽管Rb+离子常见于与其他离子混合添加的研究中,但有关单独添加Rb+离子对钙钛矿薄膜形貌与电池性能的影响的研究很少,并且缺乏不同比例添加效果的对比。

本文以氯化铷(RbCl)作为添加剂,利用两步旋涂法制备了钙钛矿薄膜及光伏器件,并对薄膜形貌和器件光伏性能进行了深入表征和分析,探究了不同摩尔比例的RbCl添加对FA0.665MA0.285Cs0.05PbI3钙钛矿薄膜及电池器件性能的影响,获得了最佳的添加比例。本研究结果表明,适量的RbCl添加有利于钙钛矿晶粒成长、提高载流子寿命、提升电池器件的光伏性能。这一发现对于钙钛矿太阳能电池的改性研究具有重要意义。

1 实验部分 1.1 实验材料与试剂

掺杂氟的SnO2(fluorine-doped tin oxide, FTO)导电玻璃和乙腈(99.50%)购于辽宁优选新能源科技有限公司;二氧化锡水溶液(SnO2,质量分数为15%)购于Alfa Aesar;碘化铅(PbI2,99.8%)购于TCI;氯化铷(RbCl,99.8%)和异丙醇(99.7%)购于Sigma Aldrich;二甲基亚砜(dimethyl sulfoxide, DMSO, 99.8%)和N, N-二甲基甲酰胺(N, N-dimethylformamide, DMF, 99.8%)购于Acros;甲脒氢碘酸盐(FAI,99.995%)和甲胺氢氯酸盐(MACl,99.995%)购于Greatcell Solar Materials;碘化铯(CsI,99.99%)、2-苯乙胺氢碘酸盐(2-phenylethanamine iodide, PEAI,99.5%)、4-叔丁基吡啶(99.0%)、双三氟甲烷磺酰亚胺锂(LiTFSI,99.5%)和2, 2, 7, 7-四[N, N-二(4-甲氧基苯基)氨基]-9, 9-螺二芴(Spiro-OMeTAD, 99.50%) 购于西安宝莱特科技有限公司;氯苯(99.9%)购于Adamas;用于蒸镀电极的金(Au,99.99%)购于北京安泰可科技有限公司。

1.2 钙钛矿太阳能电池的制备

本文的钙钛矿太阳能电池结构为FTO/SnO2/ FA0.665MA0.285Cs0.05PbI3/Spiro-OMeTAD/Au。在旋涂各层薄膜之前,先将已刻蚀图案的FTO玻璃基底用添加洗涤剂的去离子水超声清洗20 min,再依次用去离子水、乙醇、异丙醇各超声清洗10 min,最后使用紫外臭氧清洗20 min,再依次进行以下各层的制备。

电子传输层(electron transport layer, ETL)的制备:将SnO2水溶液以1∶3比例用去离子水稀释,充分搅拌后,滴加在FTO基片上,以4 000 r/min旋涂30 s,再在150 ℃热台上加热30 min。然后,使用紫外臭氧清洗20 min,再进行钙钛矿层的旋涂。

钙钛矿吸光层的制备:称取691.5 mg PbI2和19.5 mg CsI,溶于900 μL DMF和100 μL DMSO混合的溶剂中,充分搅拌,制成未添加RbCl的对照组前驱体溶液。添加RbCl的钙钛矿前驱体溶液与之类似,将相同质量的PbI2和CsI溶于DMF和DMSO混合溶剂后,再依次加入特定量的RbCl(添加剂相对于PbI2的摩尔比例分别为2%、4%、6%、8%、10%、12%),搅拌均匀。将前驱体溶液滴在基片上,以1 500 r/min旋涂20 s,然后在70 ℃热台上加热1 min。称取84.3 mg FAI和14.2 mg MACl,溶于1 mL异丙醇中,充分搅拌后,滴加在上述基片上,以2 000 r/min旋涂20 s,而后在湿度为30%~40%的空气中退火15 min。退火完成后,待基片冷却到室温,将浓度为20 mmol/L的PEAI异丙醇溶液滴加在钙钛矿薄膜上,以2 000 r/min旋涂20 s。

空穴层(hole transport layer, HTL)与Au电极的制备:称取80 mg Spiro-OMeTAD溶于1 mL氯苯中,滴加30 μL 4-叔丁基吡啶和36 μL 260 mg/mL的LiTFSI乙腈溶液,充分搅拌后,滴加在上述基片上,以4 000 r/min旋涂20 s,之后放入干燥柜氧化12 h。最后,使用真空蒸镀沉积一层80 nm Au电极,完成电池器件制备。

1.3 测试与表征

使用场发射扫描电子显微镜(蔡司,Merlin)观察钙钛矿薄膜表面形貌,获得扫描电子显微镜(scanning electron microscope, SEM)图像和元素能谱(energy dispersive spectrometer, EDS)分析;使用X射线衍射(X-ray diffraction, XRD)仪(Malvern Panalytical,Empyrean)对钙钛矿薄膜晶体结构进行表征,获得XRD图谱;使用紫外/可见/近红外分光光度计(PE,L950)测试钙钛矿薄膜的光吸收性能,获得紫外-可见光(UV-visible, UV-vis)吸收光谱;使用稳态/瞬态荧光光谱仪(Edinburgh,FLSP920)对钙钛矿薄膜进行光致发光(PL)光谱表征,获得载流子寿命与稳态光致发光光谱;使用太阳光模拟测试系统(光焱,SS-F5-3A)测试钙钛矿光伏器件的光伏性能;使用外量子效率(external quantum efficiency,EQE)测试仪(光焱,QE-R2)测试钙钛矿光伏电池的EQE。

2 分析与讨论 2.1 钙钛矿薄膜形貌与结构

为探究不同比例的RbCl添加对钙钛矿薄膜表面形貌的影响,对0%~12%添加RbCl后的钙钛矿薄膜进行了SEM表征,结果如图 1所示。为直观反映钙钛矿薄膜晶粒尺寸的变化,统计了不同比例添加后的薄膜晶粒尺寸,如图 2所示。由图 2可得,未添加RbCl的钙钛矿薄膜平均晶粒尺寸为1.61 μm,当添加比例为2%、4%、6%、8%、10%和12%时,钙钛矿薄膜平均晶粒尺寸分别为1.68、2.14、1.88、1.83、1.46和1.45 μm。钙钛矿薄膜晶体粒径的增大能够减少晶界和界面间的载流子非辐射复合,有利于提高光伏器件性能[26]。SEM图像中,添加RbCl后的钙钛矿薄膜表面出现白色条状晶体。通过EDS图谱(图 3)发现,钙钛矿晶格表面的Rb元素原子百分比为0.15%,而白色条状晶体中的Rb元素原子百分比为0.35%,明显高于晶格表面,与文[20]相符,可以说明白色晶体是PbI2/RbCl的混合相(PbI2)2RbCl [19, 21]。PbI2易触发钙钛矿层分解,RbCl与过量的PbI2转化为(PbI2)2RbCl混合相,有利于提高钙钛矿薄膜的稳定性[21]。根据SEM图像表征结果,随着RbCl添加比例的提高,晶粒尺寸增大,薄膜表面孔洞减少并且更加紧凑致密,这是由于Rb+的引入有利于引导(001)取向钙钛矿晶粒的生长[24]。当RbCl添加比例为4%时,晶粒平均粒径达到2.14 μm。但当RbCl添加比例进一步提高时,钙钛矿薄膜晶粒平均粒径下降。在SEM图像中可以观察到,薄膜表面变得更加不平整,原因可能是位于晶格空隙的Rb+增多,引起了晶体结构损伤和畸变,致使薄膜质量降低[27]

图 1 以不同比例添加RbCl的钙钛矿薄膜SEM图像

图 2 以不同比例添加RbCl的钙钛矿薄膜晶粒尺寸统计分布图

图 3 添加比例4%薄膜的EDS能谱图

为分析RbCl添加对钙钛矿薄膜晶体结构的影响,对钙钛矿薄膜进行了XRD表征,结果如图 4所示。由图 4可知,所有样品均具有14.2°和28.3°两个主峰,对应的是钙钛矿晶体的(001)和(002)晶面[28]。如图 5所示,添加RbCl后的钙钛矿薄膜衍射强度有所提高,说明RbCl对改善钙钛矿结晶具有促进作用。同时,添加RbCl后,12.6°位置的PbI2衍射峰被抑制,在11.3°位置出现新的衍射峰,该峰的出现与(PbI2)2RbCl晶体的形成有关,此结果与SEM图像相吻合[21],说明RbCl没有完全嵌入钙钛矿晶格,部分RbCl与过量PbI2结合,存在于晶格间隙位置和表面处[24]

图 4 以不同比例添加RbCl的钙钛矿薄膜XRD图谱

图 5 钙钛矿薄膜局部XRD图谱

2.2 钙钛矿薄膜载流子传输特性

为研究RbCl对钙钛矿载流子动力学的影响,采用Glass/FTO/SnO2/钙钛矿薄膜结构,进行时间分辨光致发光(time-resolved photoluminescence, TRPL) 光谱和稳态光致发光(steady-state photoluminescence, SSPL)光谱表征,结果如图 6所示。用两指数模型拟合TRPL曲线[10]

$ I(t)=A_1 \exp \left(-\frac{t}{\tau_1}\right)+A_2 \exp \left(-\frac{t}{\tau_2}\right)+I_0. $ (1)
图 6 以不同比例添加RbCl的钙钛矿薄膜TRPL和SSPL谱图

其中: τ1为快速衰减寿命,τ2为慢速衰减寿命,反映了光生载流子的复合情况; A1A2为载流子衰变振幅; I0为抵消基线位移的常数。平均寿命τavg

$ \tau_{\text {avg }}=\frac{A_1 \tau_1^2+A_2 \tau_2^2}{A_1 \tau_1+A_2 \tau_2} . $ (2)

根据拟合数据计算可知,对照组的钙钛矿薄膜τavg为291.34 ns,添加4% RbCl的薄膜平均寿命降低到279.52 ns,但添加比例过高时平均寿命显著增加,添加12% RbCl的薄膜平均寿命增长到了1 896.36 ns,该趋势与稳态PL峰强的变化吻合,说明低比例添加时界面电荷的传输与提取得到了强化,但高比例添加对电荷的提取有负面影响。并且,4%比例添加RbCl时τ1的衰减振幅A1占比从48.74% 增加到75.25%,这说明钙钛矿薄膜内的主要衰变机制是电荷提取。4%比例RbCl的添加增强了界面间的载流子传输,抑制了钙钛矿薄膜载流子非辐射复合,有利于提高太阳能电池的性能[29-30]

2.3 钙钛矿薄膜的光电性能

利用太阳光模拟系统测试了各组电池的光伏性能。为排除偶然性对实验的影响,对实验数据进行了统计分析,结果如图 7所示。图 7a表明,以小于等于8%比例添加RbCl能有效提高钙钛矿太阳能电池的光电转化效率(PCE)。PCE的变化可归因于开路电压(VOC)、短路电流密度(JSC)和填充因子(FF)的提高,如图 7b7d所示。由2.1节可知,以小于或等于8%比例添加RbCl能够引导钙钛矿晶粒结晶,增大晶粒尺寸,减少晶界,提高薄膜质量,改善载流子传输特性。因此,以小于或等于8%比例添加RbCl后,电池VOC明显提升,代表电池品质的FF也明显高于对照组。但当添加比例进一步提高时,过量的RbCl破坏了晶体结构,导致晶格发生畸变,薄膜质量下降,以至于VOC和FF低于对照组。

图 7 以不同比例添加RbCl的钙钛矿太阳能电池光伏性能统计图

为进一步分析JSC的变化,测试了光伏器件的外量子效率(EQE)曲线(如图 8所示),并对钙钛矿薄膜的UV-vis吸收光谱进行了表征(如图 9所示)。从图 8可以看出,以小于或等于8%比例添加RbCl的电池在光谱响应区间的EQE略微高于对照组,在300~500 nm区间较为明显。其中,添加4%比例RbCl的电池具有最高的EQE, 而以更高比例添加RbCl的电池EQE明显低于对照组,这与JSC的变化趋势基本吻合。根据图 9所示的钙钛矿薄膜光吸收特性可知,以小于或等于6%比例添加RbCl的钙钛矿薄膜与对照组薄膜的光吸收特性基本一致,以8%比例添加RbCl的样品在400~600 nm波长范围的吸光度略低于对照组,以更高比例添加RbCl的钙钛矿薄膜吸光度明显低于对照组。测试发现,各组钙钛矿薄膜厚度并未发生明显变化,平均厚度为(698.59±7.96)nm。然而,粗糙度随着添加比例的提高呈现上升趋势,对照组钙钛矿薄膜的粗糙度为49.6 nm,4%比例添加RbCl后粗糙度略有增加,为54.9 nm,但8%比例添加后粗糙度迅速上升到79.0 nm。由于高粗糙度会引起光学损失[31],因此过高比例添加RbCl导致薄膜的吸光度下降。虽然RbCl并没有改善钙钛矿薄膜的光吸收特性,但由2.2节可知,适量RbCl添加可以提高界面载流子的抽取与传输效率,因此EQE明显提高,JSC明显优于对照组。过高比例(>8%)的RbCl添加会导致晶格畸变、晶粒尺寸减小、晶界增多,对载流子传输不利,且吸光度显著下降,因此电池EQE降低,JSC低于对照组。此外,由UV-vis吸收光谱可知,添加RbCl对钙钛矿薄膜的吸收带边位置没有影响,这说明RbCl的添加并未引起带隙变化,与稳态荧光光谱中峰值位置几乎不变的结果相一致,也与文[12]和[24]的结论相符。

图 8 以不同比例添加RbCl的钙钛矿太阳能电池EQE曲线

图 9 以不同比例添加RbCl的钙钛矿薄膜UV-vis吸收光谱

总体来说,在前驱体溶液中以小于或等于8%比例添加RbCl可以提高钙钛矿光伏器件的光电转化效率,结合VOCJSC、FF等参数和钙钛矿薄膜表征,最佳添加比例为4%。这一发现对于改善钙钛矿薄膜质量、提高钙钛矿光伏电池性能具有重要意义。

3 结论

本文将RbCl添加在前驱体溶液中,通过分析不同RbCl添加比例对钙钛矿薄膜形貌、晶体结构以及太阳能电池性能的影响,主要得到以下结论:

1) RbCl在成膜过程中引导晶体生长,部分RbCl与过量PbI2结合,存在于晶格间隙位置和表面处。当RbCl添加的摩尔比例小于或等于8%时,可显著增大晶粒尺寸,改善薄膜质量,强化钙钛矿界面间的载流子提取与传输,抑制载流子非辐射复合;但过高的添加比例会降低薄膜质量,不利于界面间电荷传输。

2) 适量的RbCl添加能够大幅提高电池器件的光电转化效率、开路电压、短路电流和填充因子。最佳RbCl添加摩尔比例为4%,光电转化效率可达20.07%,相对于未添加RbCl的电池器件提高了6.30%。

参考文献
[1]
IEA. Projected costs of generating electricity 2020[R/OL]. (2020-12-31)[2023-06-06]. https://www.iea.org/reports/projected-costs-of-generating-electricity-2020.
[2]
GAO Y, YANG X X, TAN Z C, et al. Effects of beam splitting on photovoltaic properties of monocrystalline silicon, multicrystalline silicon, GaAs, and perovskite solar cells for hybrid utilization[J]. International Journal of Green Energy, 2023, 20(8): 835-843. DOI:10.1080/15435075.2022.2119855
[3]
ZHU P C, GU S, LUO X, et al. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer[J]. Advanced Energy Materials, 2020, 10(3): 1903083. DOI:10.1002/aenm.201903083
[4]
汪志鹏, 李瑞, 张梅, 等. SnO2基钙钛矿太阳能电池界面调控与性能优化[J]. 工程科学学报, 2023, 45(2): 263-277.
WANG Z P, LI R, ZHANG M, et al. Interface modification and performance optimization of SnO2 based perovskite solar cells[J]. Chinese Journal of Engineering, 2023, 45(2): 263-277. (in Chinese)
[5]
WANG Z W, ZENG L W, ZHU T, et al. Suppressed phase segregation for triple-junction perovskite solar cells[J]. Nature, 2023, 618(7963): 74-79. DOI:10.1038/s41586-023-06006-7
[6]
NREL. Best research-cell efficiencies chart[R/OL]. (2023- 09-05) [2023-09-26]. https://www.nrel.gov/pv/cell-efficiency.html.
[7]
JIANG Q, ZHAO Y, ZHANG X W, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nature Photonics, 2019, 13(7): 460-466. DOI:10.1038/s41566-019-0398-2
[8]
柳宇, 徐凌波, 崔灿. 基于有机胺盐表面修饰的CsPbI3全无机钙钛矿太阳能电池性能的提升[J/OL]. 浙江理工大学学报(自然科学版), 2023: 1-8. [2023-10-09]. http://kns.cnki.net/kcms/detail/33.1338.ts.20230724.1105.020.html.
LIU Y, XU L B, CUI C. Enhancement of the performance of CsPbI3 all-inorganic perovskite solar cells based on organic ammonium salt surface modification[J/OL]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2023: 1-8. [2023-10-09]. http://kns.cnki.net/kcms/detail/33.1338.ts.20230724.1105.020.html. (in Chinese)
[9]
储乐平, 赵晓磊, 杨利营, 等. 添加剂对钙钛矿太阳能电池性能的影响[J]. 天津工业大学学报, 2019, 38(2): 27-31.
CHU L P, ZHAO X L, YANG L Y, et al. Effect of additive on performance of perovskite solar cells[J]. Journal of Tianjin Polytechnic University, 2019, 38(2): 27-31. DOI:10.3969/j.issn.1671-024x.2019.02.005 (in Chinese)
[10]
王海军, 徐凌波, 崔灿. 咪唑添加剂对钙钛矿太阳能电池性能的影响[J/OL]. 浙江理工大学学报(自然科学版), 2023: 1-10. [2023-10-09]. http://kns.cnki.net/kcms/detail/33.1338.TS.20230724.1104.018.html.
WANG H J, XU L B, CUI C. Effects of imidazole additive on the performance of perovskite solar cells[J/OL]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2023: 1-10. [2023-10-09]. http://kns.cnki.net/kcms/detail/33.1338.TS.20230724.1104.018.html. (in Chinese)
[11]
陈翔, 鲍付杰, 刘乙力, 等. 氨甲环酸对于CsPbI2Br钙钛矿太阳能电池性能优化[J]. 青岛科技大学学报(自然科学版), 2023, 44(2): 31-36.
CHEN X, BAO F J, LIU Y L, et al. Improving of the performance of CsPbI2Br perovskite solar cells by tranexamic acid[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2023, 44(2): 31-36. (in Chinese)
[12]
GAO Y, ZHOU H, ZHANG Y G, et al. Effects of RbI doping on perovskite film and photovoltaic performance[C]// Conference on Infrared, Millimeter, Terahertz Waves and Applications (IMT2022). Shanghai, 2022.
[13]
ZHAO P J, YIN W P, KIM M, et al. Improved carriers injection capacity in perovskite solar cells by introducing A-site interstitial defects[J]. Journal of Materials Chemistry A, 2017, 5(17): 7905-7911. DOI:10.1039/C7TA01203A
[14]
YAO Y J, ZOU X P, CHENG J, et al. Impact of K+ doping on modulating majority charge carrier type and quality of perovskite thin films by two-step solution method for solar cells[J]. Coatings, 2019, 9(10): 647. DOI:10.3390/coatings9100647
[15]
ZHOU Z X, ZOU X P, ZHU J L, et al. K+ doping effect on grain boundary passivation and photoelectronics properties of NiOx/perovskite films[J]. Chemical Physics Letters, 2020, 757: 137882. DOI:10.1016/j.cplett.2020.137882
[16]
ENOMOTO A, SUZUKI A, OKU T, et al. Effects of Cu, K and guanidinium addition to CH3NH3PbI3 perovskite solar cells[J]. Journal of Electronic Materials, 2022, 51(8): 4317-4328. DOI:10.1007/s11664-022-09688-3
[17]
MACHIBA H, OKU T, KISHIMOTO T, et al. Fabrication and evaluation of K-doped MA0.8FA0.1K0.1PbI3(Cl) perovskite solar cells[J]. Chemical Physics Letters, 2019, 730: 117-123. DOI:10.1016/j.cplett.2019.05.050
[18]
罗烈升, 李文辉, 韩修训. 钾离子掺杂对CsPbIBr2钙钛矿薄膜光伏性能的影响[J]. 西北师范大学学报(自然科学版), 2020, 56(6): 40-43, 74.
LUO L S, LI W H, HAN X X. Effects of K+ doping on photovoltaic performances of CsPbIBr2[J]. Journal of Northwest Normal University (Natural Science), 2020, 56(6): 40-43, 74. (in Chinese)
[19]
ZHANG M, YUN J S, MA Q S, et al. High-efficiency rubidium-incorporated perovskite solar cells by gas quenching[J]. ACS Energy Letters, 2017, 2(2): 438-444. DOI:10.1021/acsenergylett.6b00697
[20]
曹冰冰. 钙钛矿太阳能电池中的碱金属离子掺杂和界面工程[D]. 厦门: 厦门大学, 2019.
CAO B B. Alkali metal cations doping and interface engineering in perovskite solar cells[D]. Xiamen: Xiamen University, 2019. (in Chinese)
[21]
ZHAO Y, MA F, QU Z H, et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells[J]. Science, 2022, 377(6605): 531-534. DOI:10.1126/science.abp8873
[22]
NAMVAR M J, ABBASPOUR-FARD M H, ROKNABADI M R, et al. Enhancement of perovskite solar cells characteristics by incorporating mixed sodium/cesium cations[J]. Optik, 2019, 185: 1019-1023. DOI:10.1016/j.ijleo.2019.04.052
[23]
UEOKA N, OKU T, SUZUKI A. Additive effects of alkali metals on Cu-modified CH3NH3PbI3-δClδ photovoltaic devices[J]. RSC Advances, 2019, 9(42): 24231-24240. DOI:10.1039/C9RA03068A
[24]
UEOKA N, OKU T, SUZUKI A. Effects of doping with Na, K, Rb, and formamidinium cations on (CH3NH3)0.99 Rb0.01Pb0.99Cu0.01I3-x(Cl, Br)xperovskite photovoltaic cells[J]. AIP Advances, 2020, 10(12): 125023.
[25]
李玉娇. 碱金属掺杂对MAPbI3多晶薄膜光电物理性能的影响[D]. 曲阜: 曲阜师范大学, 2022.
LI Y J. Influence of alkali metal doping on photoelectric physical properties of MAPbI3 polycrystalline thin films[D]. Qufu: Qufu Nomal University, 2022. (in Chinese)
[26]
GIESBRECHT N, SCHLIPF J, GRILL I, et al. Single-crystal-like optoelectronic-properties of MAPbI3 perovskite polycrystalline thin films[J]. Journal of Materials Chemistry A, 2018, 6(11): 4822-4828.
[27]
ZHAO W G, YAO Z, YU F Y, et al. Alkali metal doping for improved CH3NH3PbI3 perovskite solar cells[J]. Advanced Science, 2018, 5(2): 1700131.
[28]
XIONG Z H, LAN L K, WANG Y Y, et al. Multifunctional polymer framework modified SnO2 enabling a photostable α-FAPbI3 perovskite solar cell with efficiency exceeding 23%[J]. ACS Energy Letters, 2021, 6(11): 3824-3830.
[29]
韩亮, 崔灿. (NH4)2S修饰SnO2/钙钛矿界面对钙钛矿太阳能电池性能的影响[J/OL]. 浙江理工大学学报(自然科学版), 2023: 1-9. [2023-10-09]. http://kns.cnki.net/kcms/detail/33.1338.TS.20230724.1045.006.html.
HAN L, CUI C. Effects of (NH4)2S modified SnO2/ perovskite interface on the performance of perovskite solar cells[J/OL]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2023: 1-9. [2023-10-09]. http://kns.cnki.net/kcms/detail/33.1338.TS.20230724.1045.006.html. (in Chinese)
[30]
邵梦婷, 林萍, 崔灿. 锡酸钡/钙钛矿的界面修饰对钙钛矿太阳能电池性能的影响[J]. 浙江理工大学学报(自然科学版), 2023, 49(1): 50-58.
SHAO M T, LIN P, CUI C. Influence of BaSnO3/perovskite interface modification on the performance of perovskite solar cells[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2023, 49(1): 50-58. (in Chinese)
[31]
张思健, 胡建, 吕梅, 等. 聚合物钝化钙钛矿量子点的红光放大自发辐射性能[J]. 液晶与显示, 2022, 37(7): 787-796.
ZHANG S J, HU J, LV M, et al. Red amplified spontaneous emission of polymer passivated perovskite quantum dots[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(7): 787-796. (in Chinese)