用于MEMS陀螺的PCIe实时测控平台设计

周斌, 邱志昌

清华大学学报(自然科学版) ›› 2017, Vol. 57 ›› Issue (12) : 1310-1316.

PDF(2282 KB)
PDF(2282 KB)
清华大学学报(自然科学版) ›› 2017, Vol. 57 ›› Issue (12) : 1310-1316. DOI: 10.16511/j.cnki.qhdxxb.2017.21.036
精密仪器与机械学

用于MEMS陀螺的PCIe实时测控平台设计

  • 周斌, 邱志昌
作者信息 +

Design of PCI express real-time measurement and control platforms for MEMS gyroscopes

  • ZHOU Bin, QIU Zhichang
Author information +
文章历史 +

摘要

该文提出了一种用于微机电(micro electro mechanical system,MEMS)陀螺的PCIe (PCI express)实时测控平台。系统通过对PCIe和现场可编程门阵列(field programmable gate array,FPGA)驱动以及延时环节进行加速优化,实现了陀螺驱动频率闭环和驱动幅度闭环控制,使线振动陀螺工作在谐振频率上且幅值稳定。针对测控系统的实时性和稳定性特性,从硬件和软件两个层面进行了分析。首先在PCIe总线方面,优化了FPGA硬件,对总线传输控制和PCIe IP核接口控制进行了加速处理,将单次读数耗时降至1.8 μs;其次在系统软件方面,完成对底层驱动和算法的精简,减少内核层和用户层之间的数据传输延时,并通过制定高效的数据时序控制方案,实现数据稳定传输,最终将系统的采样频率稳定在100 kHz。

Abstract

APCI Express (PCIe) real-time measurement and control platform was developed for micro electro mechanical system(MEMS) gyroscopes. The PCIe, the field programmable gate array (FPGA) driver and the delay link were optimized and accelerated to give closed-loop control of the gyro for both the driving frequency and the driving amplitude. Consequently, the linear vibration gyroscope operates at the resonant frequency and the amplitude is stable. The real-time performance and stability of the measurement and control system are analyzed. The FPGA hardware was optimized for the PCIe bus transmission. The single readout time was reduced to 1.8 μs by accelerating the bus transmission control and the PCIe IP core interface control. The driver was streamlined to reduce the data transmission delay between the kernel layer and the user layer. Efficient data transmission timing control stabilized the data transmission. The gyroscope operating frequency was then stable at 100 kHz.

关键词

微机电(MEMS)陀螺 / PCIe (PCI express) / 现场可编程门阵列(FPGA) / 实时性

Key words

micro electro mechanical system (MEMS) gyroscope / PCI express / field programmable gate array (FPGA) / real-time

引用本文

导出引用
周斌, 邱志昌. 用于MEMS陀螺的PCIe实时测控平台设计[J]. 清华大学学报(自然科学版). 2017, 57(12): 1310-1316 https://doi.org/10.16511/j.cnki.qhdxxb.2017.21.036
ZHOU Bin, QIU Zhichang. Design of PCI express real-time measurement and control platforms for MEMS gyroscopes[J]. Journal of Tsinghua University(Science and Technology). 2017, 57(12): 1310-1316 https://doi.org/10.16511/j.cnki.qhdxxb.2017.21.036
中图分类号: TP274+.2   

参考文献

[1] Guo Z S, Cheng F C, Li B Y. et al. Research development of silicon MEMS gyroscopes:A review[J]. Microsystem Technologies, 2015, 21(10):2053-2066.[2] Xia D Z, Hu Y W, Ni P Z. A digitalized gyroscope system based on a modified adaptive control method[J]. Sensors, 2016, 16(3):321-342.[3] Taheri-Tehrani P, Izyumin O, Izyumin I, et al. Disk resonator gyroscope with whole-angle mode operation[C]//2015 IEEE International Symposium on Inertial Sensors and Systems (ISISS). Kauai, HI, USA:IEEE Press, 2015:1-4.[4] 严杰, 周斌, 张嵘. 基于多核技术的三轴陀螺数字测控系统[J]. 微计算机信息, 2010(11):29-31. YAN Jie, ZHOU Bin, ZHANG Rong. Digital measurement and control system of three-axis gyroscope based on multi-core technology[J]. Microcomputer Information, 2010(11):29-31. (in Chinese)[5] Trusov A A, Chepurko I, Schofield A R, et al. A standalone programmable signal processing unit for versatile characterization of MEMS gyroscopes[C]//Sensors, 2007 IEEE. Atlanta, GA, USA:IEEE Press, 2007:244-247.[6] Gregory J A, Cho J, Najafi K. MEMS rate and rate-integrating gyroscope control with commercial software defined radio hardware[C]//201116th International Solid-State Sensors, Actuators and Microsystems Conference. Beijing, China:IEEE Press, 2011:2394-2397.[7] Proctor F. Introduction to Linux for Real-Time Control[R]. Gaithersburg, MD, USA:National Institute of Standards and Technology, Intelligent Systems Division, 2002.[8] Dedicated Systems Encyclopaedia. Free downloadable reports[Z/OL].[2017-02-01]. http://www.dedicated-systems.com/1ViewSamplereports.aspx.

PDF(2282 KB)

Accesses

Citation

Detail

段落导航
相关文章

/