基于水域跟踪的极化SAR图像桥梁检测

刘春, 杨健, 徐丰, 范一大

清华大学学报(自然科学版) ›› 2017, Vol. 57 ›› Issue (12) : 1303-1309.

PDF(5211 KB)
PDF(5211 KB)
清华大学学报(自然科学版) ›› 2017, Vol. 57 ›› Issue (12) : 1303-1309. DOI: 10.16511/j.cnki.qhdxxb.2017.25.057
电子工程

基于水域跟踪的极化SAR图像桥梁检测

  • 刘春1, 杨健1, 徐丰2, 范一大2
作者信息 +

Bridge detection in polarimetric SAR images based on water area tracing

  • LIU Chun1, YANG Jian1, XU Feng2, FAN Yida2
Author information +
文章历史 +

摘要

从精确的分割和连通桥梁跨越水域角度出发,该文提出一种基于水域跟踪的极化合成孔径雷达(polarimetric synthetic aperture radar,POL-SAR)图像桥梁检测方法。该方法首先使用极化SAR水平集分割方法实现精确的水陆分割,然后通过分支水域扫描及跟踪实现与桥梁检测相关各分支水域的连接,最后提取水域轮廓特征点确定桥梁端点,进而根据桥梁端点确定桥体区域实现桥梁检测。使用新加坡地区和中国海南陵水地区RADARSAT-2极化SAR数据进行实验,实验结果表明:该算法检测正确率高,且在大场景范围内实现了极短桥梁检测。

Abstract

Bridges interfere with automatic segmentation and linking of waterways crossed by bridges. This paper describes an automatic bridge detection method using polarimetric synthetic aperture radar (SAR) based on tracing of known water areas. The water areas are first accurately extracted using a level set segmentation algorithm from polarimetric SAR images. All the water branches related to the bridge are then linked by the scanning and the tracing of the water areas. The feature points on the water branch contours are extracted to identify the bridge end points. The bridge bodies are then developed from the end points. The algorithm was tested using polarimetric SAR images from RADARSAT-2 over Singapore and Lingshui, China. The results show that the detection rate of this algorithm is very high. Even small bridges in large scenes are correctly identified by the algorithm.

关键词

合成孔径雷达 / 桥梁检测 / 水域跟踪

Key words

synthetic aperture radar / bridge detection / water area tracing

引用本文

导出引用
刘春, 杨健, 徐丰, 范一大. 基于水域跟踪的极化SAR图像桥梁检测[J]. 清华大学学报(自然科学版). 2017, 57(12): 1303-1309 https://doi.org/10.16511/j.cnki.qhdxxb.2017.25.057
LIU Chun, YANG Jian, XU Feng, FAN Yida. Bridge detection in polarimetric SAR images based on water area tracing[J]. Journal of Tsinghua University(Science and Technology). 2017, 57(12): 1303-1309 https://doi.org/10.16511/j.cnki.qhdxxb.2017.25.057
中图分类号: TN957.52   

参考文献

[1] 戴光照, 张荣. 高分辨率SAR图像中的桥梁识别方法研究[J]. 遥感学报, 2007, 11(2):177-184.DAI Guangzhao, ZHANG Rong. A study of bridge recognition in high resolution SAR images[J]. Journal of Remote Sensing, 2007, 11(2):177-184. (in Chinese)[2] Chen Y, Chen J, Yang J. Novel method for SAR image segmentation with application to bridge detection[C]//IEEE International Conference on Signal Processing. Beijing, China:IEEE, 2006.[3] Song W Y, Rho S H, Kwag Y K. Automatic bridge detection scheme using CFAR detector in SAR images[C]//IEEE International Asia-Pacific Conference on Synthetic Aperture Radar. Seoul, South Korea:IEEE, 2011:1-4.[4] 张军, 高贵, 李国辉. 基于Parzen窗函数的SAR图像人造目标检测算法[J]. 华中科技大学学报(自然科学版), 2008, 36(8):24-27. ZHANG Jun, GAO Gui, LI Guohui. Parzen-window function-based algorithm for detecting man-made target in SAR images[J]. J Huazhong Univ (Sci and Tech), 2008, 36(8):24-27. (in Chinese)[5] 王运锋, 汤志伟, 王建国. SAR图像中桥梁的识别方法研究[J]. 系统工程与电子技术, 2001, 23(6):76-78.WANG Yunfeng, TANG Zhiwei, WANG Jianguo. The study of identifying method about bridge on SAR image[J]. Systems Engineering and Electronics, 2001, 23(6):76-78. (in Chinese)[6] 安成锦, 王卫华, 辛玉林, 等. 中低分辨率SAR图像桥梁识别方法研究[J]. 雷达科学与技术, 2010, 8(6):510-515.AN Chengjin, WANG Weihua, XlN Yulin, et al. Recognition of bridge in medium-low resolution SAR image[J]. Radar Science and Technology, 2010, 8(6):510-515. (in Chinese)[7] 于大洋, 周露, 杨健, 等. 基于极化合成孔径雷达数据的桥梁检测[J]. 清华大学学报(自然科学版), 2005, 45(7):888-891.YU Dayang, ZHOU Lu, YANG Jian, et al. Highway bridge detection based on polarimetric SAR data[J]. J Tsinghua Univ (Sci and Tech), 2005, 45(7):888-891. (in Chinese)[8] Ben Ayed I, Mitiche A, Belhadj Z. Multiregion level-set partitioning of synthetic aperture radar images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5):793-800.[9] Ben Ayed I, Mitiche A, Belhadj Z. Polarimetric image segmentation via maximum-likelihood approximation and efficient multiphase level-sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(9):1493-1500.[10] Liu C, Yang J, Yin J J, et al. Coastline detection in SAR images using a hierarchical level set segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(11):4908-4920.[11] 刘春, 殷君君, 杨健. 基于岸线特征点合并的极化SAR图像小型港口检测[J]. 清华大学学报(自然科学版), 2015, 55(8):849-853.LIU Chun, YIN Junjun, YANG jian. Small harbor detection in polarimetric SAR images based on coastline feature point merging[J]. J Tsinghua Univ (Sci and Tech), 2015, 55(8):849-853. (in Chinese)[12] Sonka M, Hlavac V, Boyle R. Image Processing, Analysis, and Machine Vision[M]. Toronto:Cengage Learning, 2014.[13] Douglas D H, Peucker T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[J]. Cartographica:The International Journal for Geographic Information and Geovisualization, 1973, 10(2):112-122.

PDF(5211 KB)

Accesses

Citation

Detail

段落导航
相关文章

/