基于能量平衡的暖通空调系统故障检测方法

杨文, 赵千川

清华大学学报(自然科学版) ›› 2017, Vol. 57 ›› Issue (12) : 1272-1279.

PDF(1463 KB)
PDF(1463 KB)
清华大学学报(自然科学版) ›› 2017, Vol. 57 ›› Issue (12) : 1272-1279. DOI: 10.16511/j.cnki.qhdxxb.2017.25.058
自动化

基于能量平衡的暖通空调系统故障检测方法

  • 杨文1,2, 赵千川1
作者信息 +

Fault detection in HVAC systems based on energy balances

  • YANG Wen1,2, ZHAO Qianchuan1
Author information +
文章历史 +

摘要

暖通空调在长期运行过程中,设备和传感器故障时有发生,不仅给暖通系统的运行带来安全风险,也是导致建筑能源浪费的主要原因之一。该文针对建筑暖通空调系统故障检测问题,分析了暖通空调系统能量传输和变换的主要环节,建立了建筑暖通空调能量网络模型。在此基础上,利用能量守恒这一基本物理定律,给出了基于能量平衡的故障检测方法。该方法利用暖通空调系统能量的传递和变换过程,建立起跨多个系统的传感器数据关联关系,将空气处理环节、水处理环节以及配电系统的测量数据有效整合,充分利用全局性的冗余信息,进而能同时针对空调设备故障、传感器故障以及涉及配电等跨系统传播的故障进行检测。实例验证表明:该方法建模简单、计算简便、易于工程实现。

Abstract

The air conditioning equipment and sensors in heating, ventilation and air conditioning (HVAC) systems can fail which is one of the main causes of building energy waste and risks to the safe operation of the HVAC system. A fault detection method based on energy balances was developed based on an HVAC energy network model. Energy conservation is then used to detect faults. The method analyzes the energy transfers for the air flows, the waterflows and the measured data in the distribution system in a global correlation across multiple systems. The method can simultaneously detect air conditioning equipment failures, sensor failures, and cross-system failures involving the power distribution. An example shows that the method is simple and easy to implement.

关键词

暖通空调 / 故障检测 / 能量平衡

Key words

heating, ventilation and air conditioning (HVAC) / fault diagnosis / energy balance

引用本文

导出引用
杨文, 赵千川. 基于能量平衡的暖通空调系统故障检测方法[J]. 清华大学学报(自然科学版). 2017, 57(12): 1272-1279 https://doi.org/10.16511/j.cnki.qhdxxb.2017.25.058
YANG Wen, ZHAO Qianchuan. Fault detection in HVAC systems based on energy balances[J]. Journal of Tsinghua University(Science and Technology). 2017, 57(12): 1272-1279 https://doi.org/10.16511/j.cnki.qhdxxb.2017.25.058
中图分类号: TP277   

参考文献

[1] Ahn B C, Mitchell J W, McIntosh I B D. Model-based fault detection and diagnosis for cooling towers[J]. ASHRAE Transactions, 2001(107):839-846.[2] Chen Y M, Wang S W. Sensor fault tolerant control of outdoor air flow based on neural networks[J]. Indoor Air Quality, Ventilation and Energy Conservation in Buildings, 2001(2):231-242.[3] Choi K, Namburu S M, Azam M S, et al. Fault diagnosis in HVAC chillers[J]. IEEE Instrumentation & Measurement Magazine, 2005, 8(3):24-32.[4] WANG Shengwei, WANG Jinbo. Robust sensor fault diagnosis and validation in HVAC systems[J]. Transactions of the Institute of Measurement and Control, 2002, 24(3):231-262.[5] DU Zhimin, JIN Xinqiao. Detection and diagnosis for sensor fault in HVAC systems[J]. Energy Conversion and Management, 2007, 48(3):693-702.[6] YAN Ying, Luh P B, Pattipati K R. Fault diagnosis of HVAC air-handling systems considering fault propagation impacts among components[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(2):705-717.[7] Wang S, Zhou Q, Xiao F. A system-level fault detection and diagnosis strategy for HVAC systems involving sensor faults[J]. Energy and Buildings, 2010, 42(4):477-490.[8] Katipamula S, Brambley M R. Review article:Methods for fault detection, diagnostics, and prognostics for building systems-A review, Part I[J]. HVAC & R Research, 2005, 11(1):3-25.[9] Katipamula S, Brambley M R. Review article:Methods for fault detection, diagnostics, and prognostics for building systems-A review, part Ⅱ[J]. HVAC & R Research, 2005, 11(2):169-187.[10] Yu Y, Woradechjumroen D, Yu D. A review of fault detection and diagnosis methodologies on air-handling units[J]. Energy and Buildings, 2014, 82:550-562.[11] Beghi A, Brignoli R, Cecchinato L, et al. Data-drivenfault detection and diagnosis for HVAC water chillers[J]. Control Engineering Practice, 2016, 53:79-91.[12] HOU Zhijian, LIAN Zhiwei, YAO Ye, et al. Data mining based sensor fault diagnosis and validation for building air conditioning system[J]. Energy Conversion and Management, 2006, 47(15):2479-2490.[13] Yan R, Ma Z, Kokogiannakis G, et al. A sensor fault detection strategy for air handling units using cluster analysis[J]. Automation in Construction, 2016, 70:77-88.[14] 江亿, 朱伟峰. 暖通空调系统传感器的故障检测[J]. 清华大学学报(自然科学版), 1999, 39(12):54-56, 61.JIANG Yi, ZHU Weifeng. Sensor fault detection in heating, ventilation and air-conditioning systems[J]. Journal of Tsinghua University (Science and Technology), 1999, 39(12):54-56, 61. (in Chinese)[15] 江亿, 朱伟峰, 周强华. 暖通空调系统故障诊断的故障向量空间法[J]. 清华大学学报(自然科学版), 1999, 39(12):57-61.JIANG Yi, ZHU Weifeng, ZHOU Qianghua. Fault direction space method for fault detect ion and diagnosis in HVAC systems[J]. Journal of Tsinghua University (Science and Technology), 1999, 39(12):57-61. (in Chinese)[16] Venkatasubramanian V, Rengaswamy R, Yin K, et al. A review of process fault detection and diagnosis:Part I:Quantitative model-based methods[J]. Computers & Chemical Engineering, 2003, 27(3):293-311.[17] 韩光泽, 华贲, 陈清林, 等. 能量的普遍化表达式与能态公设[J]. 华南理工大学学报(自然科学版), 2001, 29(7):48-50.HAN Guangze, HUA Ben, CHEN Qinglin, et al. The general energy and the energy state postulate[J]. Journal of South China University of Technology (Natural Science Edition), 2001, 29(7):48-50. (in Chinese)[18] 陈皓勇, 文俊中, 王增煜, 等. 能量网络的传递规律与网络方程[J]. 西安交通大学学报, 2014, 48(10):66-76.CHEN Haoyong, WEN Junzhong, WANG Zengyu, et al. Transfer laws and equations of energy networks[J]. Journal of Xi'an Jiaotong University, 2014, 48(10):66-76. (in Chinese)[19] 晋欣桥, 杜志敏, 惠广海, 等. 楼宇空调水系统温度传感器固定偏差故障的诊断方法[J]. 机械工程学报, 2004, 40(9):42-47.JIN Xinqiao, DU Zhimin, HUI Guanghai, et al. Fault detection and diagnosis method for the temperature sensors with fixed bias in water systems of HVAC[J]. Journal of Mechanical Engineering, 2004, 40(9):42-47. (in Chinese)[20] Taal A, Itard L, Zeiler W, et al. Automatic detection and diagnosis of faults in sensors used in EMS[C]//Proceedings of the 12th REHVA World Congress. Aalborg, Denmark:Aalborg University Press, 2016:1-10.

PDF(1463 KB)

Accesses

Citation

Detail

段落导航
相关文章

/