适用于粒子法的精准连续表面力模型

孙晨, 姜胜耀, 段日强

清华大学学报(自然科学版) ›› 2018, Vol. 58 ›› Issue (2) : 181-187.

PDF(1302 KB)
PDF(1302 KB)
清华大学学报(自然科学版) ›› 2018, Vol. 58 ›› Issue (2) : 181-187. DOI: 10.16511/j.cnki.qhdxxb.2018.25.002
核能与新能源工程

适用于粒子法的精准连续表面力模型

  • 孙晨, 姜胜耀, 段日强
作者信息 +

Accurate continuum surface force model applicable to particle methods

  • SUN Chen, JIANG Shengyao, DUAN Riqiang
Author information +
文章历史 +

摘要

针对粒子法中表面张力计算的准确性问题,该文对连续表面力(continuum surface force,CSF)模型进行了改进。在采用一种几何法精准识别界面粒子的基础上,曲率由仅需考虑作用域内界面粒子的单位法线面散度计算得到,且表面张力仅作用于界面粒子。圆和椭圆的曲率计算结果表明,改进后的模型在合适的分辨率和光滑长度下可实现较高的曲率计算精度。采用移动粒子半隐式(moving particle semi-implicit,MPS)方法对表面张力作用下的方形液滴振荡和液滴碰撞过程进行了二维单相流动模拟,模拟结果的振荡周期与理论值接近,液滴形状合理且表面光滑,表明改进后的CSF模型可准确地模拟动态算例中的表面张力作用。

Abstract

The continuum surface force (CSF) model was used to improve the accuracy of surface tension calculation using the particle method. A geometric method was developed to accurately detect the boundary particle with the curvature calculated from the surface divergence of the unit normal, which only depends on the boundary particles in the interaction domain. The surface tension was then calculated only on the boundary particle. Curvature calculation results using a circle and an ellipse showed that the curvature calculation is more accurate with the proper resolution and smoothing length. Two-dimensional, two single-phase models of square drop oscillations and two drops colliding with surface tension effects were simulated using the moving particle semi-implicit (MPS) method. The predicted oscillation periods agreed well with analytical results with reasonable shape and smooth surfaces. The results indicate that this improved CSF model can accurately simulate the surface tension effect in two-phase flows.

关键词

粒子法 / 表面张力 / 连续表面力模型 / 移动粒子半隐式法

Key words

particle method / surface tension / continuum surface force model / moving particle semi-implicit method

引用本文

导出引用
孙晨, 姜胜耀, 段日强. 适用于粒子法的精准连续表面力模型[J]. 清华大学学报(自然科学版). 2018, 58(2): 181-187 https://doi.org/10.16511/j.cnki.qhdxxb.2018.25.002
SUN Chen, JIANG Shengyao, DUAN Riqiang. Accurate continuum surface force model applicable to particle methods[J]. Journal of Tsinghua University(Science and Technology). 2018, 58(2): 181-187 https://doi.org/10.16511/j.cnki.qhdxxb.2018.25.002
中图分类号: O351.2   

参考文献

[1] KOSHIZUKA S, OKA Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid[J]. Nuclear Science and Engineering, 1996, 123(3):421-434.[2] LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. Astronomical Journal, 1977, 82(12):1013-1024.[3] GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics:Theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181:375-389.[4] NUGENT S, POSCH H A. Liquid drops and surface tension with smoothed particle applied mechanics[J]. Physical Review E, 2000, 62(4):4968-4975.[5] BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2):335-354.[6] MORRIS J P. Simulating surface tension with smoothed particle hydrodynamics[J]. International Journal for Numerical Methods in Fluids, 2000, 33(3):333-353.[7] ADAMI S, HU X Y, ADAMS N A. A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation[J]. Journal of Computational Physics, 2010, 229(13):5011-5021.[8] ZHANG M Y. Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method[J]. Journal of Computational Physics, 2010, 229(19):7238-7259.[9] DUAN G T, KOSHIZUKA S, CHEN B. A contoured continuum surface force model for particle methods[J]. Journal of Computational Physics, 2015, 298:280-304.[10] NOMURA K, KOSHIZUKA S, OKA Y, et al. Numerical analysis of droplet breakup behavior using particle method[J]. Journal of Nuclear Science and Technology, 2001, 38(12):1057-1064.[11] LEE B H, PARK J C, KIM M H, et al. Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200:1113-1125.[12] TANAKA M, MASUNAGA T. Stabilization and smoothing of pressure in MPS method by quasi-compressibility[J]. Journal of Computational Physics, 2010, 229(11):4279-4290.[13] DILTS G A. Moving least-squares particle hydrodynamics Ⅱ:Conservation and boundaries[J]. International Journal for Numerical Methods in Engineering, 2000, 48(10):1503-1524.[14] MARRONE S, COLAGROSSI A, TOUZE D L, et al. Fast free-surface detection and level-set function definition in SPH solvers[J]. Journal of Computational Physics, 2010, 229(10):3652-3663.[15] MORRIS J P, FOX P J, ZHU Y. Modeling low Reynolds number incompressible flows using SPH[J]. Journal of Computational Physics, 1997, 136(1):214-226.[16] LAMB H. Hydrodynamics[M]. 6th ed. Cambridge:Cambridge University Press, 1959.[17] MELEAN Y, SIGALOTTI L D G. Coalescence of colliding van der Waals liquid drops[J]. International Journal of Heat and Mass Transfer, 2005, 48:4041-4061.

PDF(1302 KB)

Accesses

Citation

Detail

段落导航
相关文章

/