基于硅PN结发光的量子密钥分发发射单元器件

黄卫绍, 张巍, 黄翊东

清华大学学报(自然科学版) ›› 2019, Vol. 59 ›› Issue (9) : 744-749.

PDF(2365 KB)
PDF(2365 KB)
清华大学学报(自然科学版) ›› 2019, Vol. 59 ›› Issue (9) : 744-749. DOI: 10.16511/j.cnki.qhdxxb.2019.26.017
电子工程

基于硅PN结发光的量子密钥分发发射单元器件

  • 黄卫绍, 张巍, 黄翊东
作者信息 +

Miniaturized quantum key distribution transmitterbased on silicon PN junction emissions

  • HUANG Weishao, ZHANG Wei, HUANG Yidong
Author information +
文章历史 +

摘要

该文面向便携设备与主机间实现短距离量子密钥分发(quantum key distribution,QKD)的应用场景,基于BB84协议提出一种小型化QKD发射单元器件。该器件采用硅PN结反向击穿作为光源发光机制,配合金属线栅偏振器实现4种不同线偏振态光子的发射。利用光阑和凸透镜实现发射光子的准直输出,并消除不同偏振光子在发射位置上的差别。数值计算结果表明:经过参数优化该器件可以实现大于20 dB的偏振消光比,原始密钥生成率可以达到3 kb/s。该器件结构高度可以控制在5 mm之内,便于在便携设备中应用。

Abstract

This paper describes a miniaturized quantum key distribution (QKD) transmitter for the BB84 protocol for short-range QKD applications between portable devices and hosts. The transmitter uses silicon PN junctions to generate photons and wire-grid polarizers for the polarization encoding. It also uses a convex lens and an aperture for collimation as well as to eliminate the photon spatial information. Simulations indicate that the transmitter can support a raw key generation rate of 3 kb/s and the polarization extinction ratio of the generated photons in each polarization state can reach 20 dB. The transmitter height can be as small as 5 mm, so the device can be integrated into portable devices such as mobile phones.

关键词

量子密钥分发 / 硅PN结发光 / 线栅偏振器 / 空间不可区分性

Key words

quantum key distribution / silicon PN junction emissions / wire-grid polarizer / spatial indistinguishability

引用本文

导出引用
黄卫绍, 张巍, 黄翊东. 基于硅PN结发光的量子密钥分发发射单元器件[J]. 清华大学学报(自然科学版). 2019, 59(9): 744-749 https://doi.org/10.16511/j.cnki.qhdxxb.2019.26.017
HUANG Weishao, ZHANG Wei, HUANG Yidong. Miniaturized quantum key distribution transmitterbased on silicon PN junction emissions[J]. Journal of Tsinghua University(Science and Technology). 2019, 59(9): 744-749 https://doi.org/10.16511/j.cnki.qhdxxb.2019.26.017

参考文献

[1] BENNETT C H, BRASSARD G. Quantum cryptography:Public key distribution and coin tossing[C]//Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. New York, USA:IEEE, 1984:175-179.
[2] HWANG W Y. Quantum key distribution with high loss:Toward global secure communication[J]. Physical Review Letters, 2003, 91(5):057901.
[3] YIN H L, CHEN T Y, YU Z W, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber[J]. Physical Review Letters, 2016, 117(19):190501.
[4] SASAKI M, FUJIWARA M, ISHIZUKA H, et al. Field test of quantum key distribution in the Tokyo QKD network[J]. Optics Express, 2011, 19(11):10387-10409.
[5] 倪振华, 李亚麟, 姜艳. 量子保密通信原理及其在电网中的应用探究[J]. 电力信息与通信技术, 2017, 15(10):43-49.NI Z H, LI Y L, JIANG Y. Brief introductionof quantum secure communications andthe application survey in state grid[J]. Electric Power Information and Communication Technology, 2017, 15(10):43-49. (in Chinese)
[6] PEEV M, PACHER C, ALLÉAUME R, et al. The SECOQC quantum key distribution network in Vienna[J]. New Journal of Physics, 2009, 11(7):075001.
[7] LIAO SK, CAI W Q, LIU W Y, et al. Satellite-to-ground quantum key distribution[J]. Nature, 2017, 549(7670):43-47.
[8] DULIGALL J L, GODFREY M S, HARRISON K A, et al. Low cost and compact quantum key distribution[J]. New Journal of Physics, 2006, 8(10):249-256.
[9] VEST G, RAU M, FUCHS L, et al. Design and evaluation of a handheld quantum key distribution sender module[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(3):6600607.
[10] CHUN H, CHOI I, FAULKNER G, et al. Handheld free space quantum key distribution with dynamic motion compensation[J]. Optics Express, 2017, 25(6):6784-6795.
[11] NEWMAN R. Visible light from a silicon PN junction[J]. Physical Review, 1955, 100(2):700-703.
[12] CHYNOWETH A G, MCKAY K G. Photon emission from avalanche breakdown in silicon[J]. Physical Review, 1956, 102(2):369-376.
[13] MICHAELIS W, PILKUHN M H. Radiative recombination in silicon PN junctions[J]. Physica Status Solidi B, 1969, 36(1):311-319.
[14] SNYMAN L W, PLESSIS M D, AHARONI H. Three terminal n+ ppn silicon CMOS light emitting devices (450 nm-750 nm) with three order increase in quantum efficiency[C]//Proceedings of the IEEE International Symposium on Industrial Electronics. Dubrovnik, Croatia:IEEE, 2005:1159-1166.
[15] PLESSIS D M, SNYMAN L W, AHARONI H. Low-voltage light emitting devices in silicon IC technology[C]//Proceedings of the IEEE International Symposium on Industrial Electronics, 2005. Dubrovnik, Croatia:IEEE, 2005:1145-1149.
[16] GOODMAN J W. Introduction to Fourier optics[M]. 3rd ed. Englewood:Roberts and Company Publishers, 2005.

基金

国家重点研发计划项目(2017YFA0303704);国家自然科学基金资助项目(61575102,61671438,61875101,61621064);北京市自然科学基金资助项目(Z180012);北京量子信息科学研究院项目(Y18G26)

PDF(2365 KB)

Accesses

Citation

Detail

段落导航
相关文章

/