燃烧器设计和流量控制对燃烧稳定性、SiO2生成、疏松体品质和关键组分分布有重要影响。该文通过对八甲基环四硅氧烷(OMCTS,D4)制备SiO2疏松体过程的数值研究,分析了不同下料方式,以及D4和氧气流量分配对SiO2生成效率和沉积面上关键组分分布的影响。结果表明:采用多点下料方式可以明显提高SiO2生成率和沉积均匀性;内外D4进口流速接近时,SiO2生成率较高,并且OH浓度有所降低;根据D4质量流量分配对氧气进口流量分配进行调整,能够提高SiO2生成率,但相应的OH浓度也有所增加;但在保持D4质量流量不变的情况下,采用多点下料,导致D4进口速度降低,一定程度上降低了沉积效率。采用多点下料时,可以考虑适当提高D4流量,控制火焰温度,有利于提高SiO2生成和沉积效率。
Abstract
Burner design and flow rate control strongly impact combustion stability, SiO2 generation, soot quality, and key flue gas components. This paper presents a numerical study of SiO2 soot synthesis by the CVD method with octamethylcyclotetra-siloxane (also called ‘OMCTS’ or ‘D4’) as the precursor. The study investigates the effects of various feeding modes and D4 and oxygen mass flow rates on the SiO2 generation efficiency and the distribution of key components on the surface. The SiO2 generation rate and deposition uniformity can be significantly improved by using the multi-point feeding mode which increases the SiO2 generation rate and reduces the OH concentration even with similar D4 inlet velocities. Proper control of the oxygen flow rate relative to the D4 mass flow rate improves the SiO2 generation rate, but also increases the OH concentration. The multi-point feeding mode with the same D4 mass flow rate can reduce the D4 inlet velocity with then reduces the deposition efficiency some. Multi-point feeding with the proper increased D4 flow rate and flame temperature control improves the SiO2 generation rate and deposition efficiency.
关键词
化学气相沉积 /
反应流数值模拟 /
SiO2疏松体
Key words
chemical vapor deposition /
reactive flow numerical simulation /
SiO2 soot
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 聂兰舰, 宋学富, 向在奎, 等. 一种间接合成石英玻璃的方法及其专用设备以及一种石英玻璃:102583977A. 2012-07-18.NIE L J, SONG X F, XIANG Z K, et al. A method of indirect synthesis of silica glass and its special equipment and a kind of silica glass:102583977A. 2012-07-18. (in Chinese)
[2] DOBBINS M, MCLAY R E. Method of making fused silica by decomposing siloxanes:US5043002. 1991-08-27.
[3] BRIESEN H, FUHRMANN A, PRATSINIS S E. The effect of precursor in flame synthesis of SiO2[J]. Chemical Engineering Science, 1998, 53(24):4105-4112.
[4] 聂兰舰, 王玉芬, 向在奎, 等. 石英玻璃的制备方法:106277750A. 2017-01-04.NIE L J, WANG Y F, XIANG Z K, et al. Method of making silica glass:106277750A. 2017-01-04. (in Chinese)
[5] 张国君, 李得军, 王巍, 等. 一种石英玻璃燃烧器:206799423U. 2017-12-26.ZHANG G J, LI D J, WANG W, et al. A silica glass burner:206799423U. 2017-12-26. (in Chinese)
[6] 黄若杰, 王巍, 刘志龙, 等. 高速合成石英玻璃生产用多点下料燃烧器:207760219U. 2018-08-24.HUANG R J, WANG W, LIU Z L, et al. Multi-point feeding burner for high-speed synthetic silica glass production:207760219U. 2018-08-24. (in Chinese)
[7] LAUNDER B E, SPALDING D B, Lectures in mathermatical models of turbulence[M]. London:Academic Press, 1972.
[8] CHEN J, HUANG Z Y, ZHENG L L. Detailed OMCTS/H2/O2 chemical kinetics mechanism and its application in the fused silica glass synthesis[J]. Journal of Non-Crystalline Solids, 2018, 481:33-40.
[9] CHUI E H, RAITHBY G D. Computation of radiant heat transfer on a non-orthogonal mesh using the finite-volume method[J]. Numerical Heat Transfer, Part B:Fundamentals, 1993, 23(3):269-288.
[10] HUANG Z Y, HUANG Y S, ZHENG L L, et al. Effects of precursors on silica particle generation in CVD synthesis for fused silica glass[J]. Journal of Non-Crystalline Solids, 2018, 499:86-94.
[11] 黄泽宇, 黄耀松, 陈靖, 等. 入口条件对D4合成石英玻璃的影响[J]. 燃烧科学与技术, 2018, 24(6):477-486.HUANG Z Y, HUANG Y S, CHEN J, et al. Effects of entrance conditions on fused silica glass synthesis using D4[J]. Journal of Combustion Science and Technology, 2018, 24(6):477-486. (in Chinese)
基金
国家重点研发计划项目(2016YFB0303802,2016YFB0303801)