社会水循环碳排放综合测算模型——以黄河流域为例

李嘉欣, 朱永楠, 彭少明, 赵勇, 李海红, 姜珊

清华大学学报(自然科学版) ›› 2024, Vol. 64 ›› Issue (4) : 626-637.

PDF(7997 KB)
PDF(7997 KB)
清华大学学报(自然科学版) ›› 2024, Vol. 64 ›› Issue (4) : 626-637. DOI: 10.16511/j.cnki.qhdxxb.2024.22.008
水利水电工程

社会水循环碳排放综合测算模型——以黄河流域为例

  • 李嘉欣1, 朱永楠2, 彭少明3, 赵勇2, 李海红2, 姜珊2
作者信息 +

Integrated carbon emission measurement model for the social water cycle: Taking the Yellow River Basin as an example

  • LI Jiaxin1, ZHU Yongnan2, PENG Shaoming3, ZHAO Yong2, LI Haihong2, JIANG Shan2
Author information +
文章历史 +

摘要

社会水循环是能源消耗和碳排放的密集区, 深入研究其各个环节的能耗和碳排放空间分布及强度特征对实现双碳目标至关重要。 该研究基于生命周期评价方法, 构建社会水循环碳核算体系及碳排放综合测算模型, 以黄河流域66个地市(州)为例, 估算社会水循环全生命周期能源消耗和碳排放。 研究发现: 2017年黄河流域下游地区的单位面积碳排放量最大, 约是上游地区的7.4倍; 在取水、 供水、 用水、 排水四大环节中, 用水环节碳排放量最大, 其中居民生活用水的碳排放量最大, 占用水环节碳排放的59.7%, 占社会水循环总碳排放的54.7%, 是社会水循环碳减排的重点环节; 黄河流域社会水循环各环节碳排放强度依次为: 用水>排水>供水>取水。 针对碳减排重点区域和环节, 提出了社会水循环节能降碳的建议。

Abstract

[Objective] As the global community moves toward carbon peak and carbon neutrality targets, the issue of carbon emissions related to water resources has emerged as a significant area of research. The social water cycle, characterized by intensive energy consumption and carbon emission, plays a pivotal role in this context. Factors such as water-related energy usage and efficiency directly affect the economy and carbon emissions of a society. Consequently, reducing carbon emissions during the social water cycle process has become a vital strategy in curbing greenhouse gas emissions. Therefore, it is crucial to accurately assess the energy consumption and carbon emissions throughout the entire social water cycle process and thoroughly understand the spatial distribution and intensity characteristics of energy consumption and carbon emissions at each stage. This study aims to identify key factors for energy saving and emission reduction within the social water cycle. [Methods] Using the life cycle assessment method, we first constructed a life cycle carbon accounting system for the social water cycle system, including four major segments: water withdrawal, supply, use, and drainage. We then established a comprehensive measurement model for social water cycle carbon emissions based on a distributed geographic model. Using the Yellow River Basin as an example, we calculated the energy consumption and carbon emissions of the social water cycle over the entire life cycle of the basin in 2017 and studied their spatial distribution characteristics. This provided a simulation method and scientific basis for establishing a more sustainable, low-carbon social water cycle. [Results] Our findings revealed that in 2017, the downstream area of the Yellow River Basin had the highest amount of carbon emissions per unit area, i.e., approximately 7.4 times higher than that in the upstream area. Among the four major segments, the water use segment had the highest amount of carbon emissions. In particular, residential water use accounted for 59.7% of the carbon emissions from the water use segment and 54.7% of the total carbon emissions from the social water cycle. This identifies it as a key segment for carbon emission reduction within the social water cycle. In terms of carbon emission intensity in each segment of the social water cycle in the Yellow River Basin, the order was: water use > drainage > water supply > water withdrawal. [Conclusions] The Yellow River Basin exhibits significant differences in carbon emissions between its upstream and downstream regions. Moreover, the intensity of carbon emissions varies greatly across different segments of the water cycle. In light of these findings, we propose several strategies for energy conservation and carbon reduction in key areas and segments of the social water cycle. First, water supply and drainage systems should be improved, and the energy efficiency of water supply and sewage treatment should be enhanced. Second, the development and utilization of clean energy sources, such as solar energy and wind energy, should be prioritized. Finally, in the industrial sector, the circulating cooling water system should be optimized, and water recycling systems should be implemented; in the residential sector, the promotion of water-saving and energy-saving appliances is recommended to improve the comprehensive efficiency of water and energy in domestic water use segments.

关键词

社会水循环 / 生命周期 / 碳足迹 / 黄河流域

Key words

social water cycle / life cycle / carbon footprint / Yellow River Basin

引用本文

导出引用
李嘉欣, 朱永楠, 彭少明, 赵勇, 李海红, 姜珊. 社会水循环碳排放综合测算模型——以黄河流域为例[J]. 清华大学学报(自然科学版). 2024, 64(4): 626-637 https://doi.org/10.16511/j.cnki.qhdxxb.2024.22.008
LI Jiaxin, ZHU Yongnan, PENG Shaoming, ZHAO Yong, LI Haihong, JIANG Shan. Integrated carbon emission measurement model for the social water cycle: Taking the Yellow River Basin as an example[J]. Journal of Tsinghua University(Science and Technology). 2024, 64(4): 626-637 https://doi.org/10.16511/j.cnki.qhdxxb.2024.22.008

参考文献

[1] 唐云霓, 闫如雪, 周艳玲. 碳中和愿景下能源政策的结构表征与优化路径[J]. 清华大学学报(自然科学版), 2023, 63(1): 1-14. TANG Y N, YAN R X, ZHOU Y L. Structural representation and optimization path of energy policy under the carbon neutral vision[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(1): 1-14. (in Chinese)
[2] 王浩, 贾仰文. 变化中的流域“自然-社会”二元水循环理论与研究方法[J]. 水利学报, 2016, 47(10): 1219-1226. WANG H, JIA Y W. Theory and study methodology of dualistic water cycle in river basins under changing conditions[J]. Journal of Hydraulic Engineering, 2016, 47(10): 1219-1226. (in Chinese)
[3] 王建华, 朱永楠, 李玲慧, 等. 社会水循环系统水-能-碳纽带关系及低碳调控策略研究[J]. 中国工程科学, 2023, 25(4): 191-201. WANG J H, ZHU Y N, LI L H, et al. Water-energy-carbon nexus of social water cycle system and low-carbon regulation strategy[J]. Strategic Study of CAE, 2023, 25(4): 191-201. (in Chinese)
[4] HE Y Y, LI Y M, LI X C, et al. Net-zero greenhouse gas emission from wastewater treatment: Mechanisms, opportunities and perspectives[J]. Renewable and Sustainable Energy Reviews, 2023, 184: 113547.
[5] ESCRIVA-BOU A, LUND J R, PULIDO-VELAZQUEZ M. Modeling residential water and related energy, carbon footprint and costs in California[J]. Environmental Science & Policy, 2015, 50: 270-281.
[6] XIANG X Z, JIA S F. China's water-energy nexus: Assessment of water-related energy use[J]. Resources, Conservation and Recycling, 2019, 144: 32-38.
[7] 吴志强, 刘晓畅, 刘琦, 等. 基于水资源约束的我国城市发展策略研究[J]. 中国工程科学, 2022, 24(5): 75-88. WU Z Q, LIU X C, LIU Q, et al. Urban development strategies in China based on water resource constraints[J]. Strategic Study of CAE, 2022, 24(5): 75-88. (in Chinese)
[8] 汪彬, 阳镇. 推动黄河流域碳达峰碳中和路径研究[J]. 宁夏社会科学, 2023(3): 140-150. WANG B, YANG Z. Study on the path of promoting carbon peak and carbon neutralization in the Yellow River Basin[J]. Ningxia Social Sciences, 2023(3): 140-150. (in Chinese)
[9] 赵忠秀, 闫云凤, 刘技文. 黄河流域九省区“双碳”目标的实现路径研究[J]. 西安交通大学学报(社会科学版), 2022, 42(5): 20-29. ZHAO Z X, YAN Y F, LIU J W. The approach to achieving the “double carbon” goal in nine provinces and regions in the Yellow River Basin[J]. Journal of Xi'an Jiaotong University (Social Sciences), 2022, 42(5): 20-29. (in Chinese)
[10] 杜森. 黄河流域节水农业现状、 问题及建议[J]. 中国农业综合开发, 2020(1): 24-25. DU S. Current situation, problems and suggestions of water-saving agriculture in the Yellow River Basin[J]. Agricultural Comprehensive Development in China, 2020(1): 24-25. (in Chinese)
[11] 彭俊杰. 基于粮食安全的黄河流域农业用水态势分析及应对策略[J]. 农业经济, 2022(7): 10-12. PENG J J. Analysis of agricultural water use situation and response strategies in the Yellow River Basin based on food security[J]. Agricultural Economy, 2022(7): 10-12. (in Chinese)
[12] 于文轩, 邵经纬. 流域水资源节约集约利用机制的完善: 以《黄河保护法》为视角[J]. 水利发展研究, 2023, 23(3): 7-11. YU W X, SHAO J W. The improvement of conservation and utilization mechanism of basin water resources: From the perspective of The Yellow River Protection Law [J]. Water Resources Development Research, 2023, 23(3): 7-11. (in Chinese)
[13] 李跃红, 蒋晓辉, 张琳. 黄河流域水资源节约集约利用能力评价[J]. 南水北调与水利科技(中英文), 2023, 21(4): 731-741. LI Y H, JIANG X H, ZHANG L. Evaluation of conservation and intensive utilization capacity of water resources in Yellow River basin[J]. South-to-North Water Transfers and Water Science and Technology, 2023, 21(4): 731-741. (in Chinese)
[14] 赵允亮. 基于生命周期评价的引水工程碳排放模型研究[J]. 东北水利水电, 2017, 35(2): 50-52. ZHAO Y L. Carbon emission modeling of water diversion projects based on life cycle evaluation[J]. Water Resources & Hydropower of Northeast China, 2017, 35(2): 50-52. (in Chinese)
[15] 陆瑶, 王宏燕, 李炎锋, 等. 大型体育场馆水-能-碳足迹关联模型与不确定性分析[J]. 环境工程, 2022, 40(12): 165-172. LU Y, WANG H Y, LI Y F, et al. A water-energy-carbon footprint nexus model for large sports venues and its uncertainty analysis[J]. Environmental Engineering, 2022, 40(12): 165-172. (in Chinese)
[16] 张慧芳, 赵荣钦, 肖连刚, 等. 不同灌溉模式下农业水能消耗及碳排放研究[J]. 灌溉排水学报, 2021, 40(12): 119-126. ZHANG H F, ZHAO R Q, XIAO L G, et al. The effects of irrigation methods on carbon emission and water-energy consumption of crop production[J]. Journal of Irrigation and Drainage, 2021, 40(12): 119-126. (in Chinese)
[17] 古作良, 高焰. 流域用水碳排放量计算方法及应用[J]. 水电能源科学, 2022, 40(10): 53-56, 143. GU Z L, GAO Y. Calculation method of carbon emissions from water use in basin and its application[J]. Water Resources and Power, 2022, 40(10): 53-56, 143. (in Chinese)
[18] 陈锋, 张晶, 任娇, 等. 基于LMDI模型的黄河流域碳排放时空差异及影响因素研究[J]. 地球环境学报, 2022, 13(4): 418-427. CHEN F, ZHANG J, REN J, et al. Spatiotemporal variations and influencing factors of carbon emissions in the Yellow River Basin based on LMDI model[J]. Journal of Earth Environment, 2022, 13(4): 418-427. (in Chinese)
[19] 高新才, 韩雪. 黄河流域碳排放的空间分异及影响因素研究[J]. 经济经纬, 2022, 39(1): 13-23. GAO X C, HAN X. Study on the spatial differentiation and influencing factors of carbon emissions in the Yellow River Basin[J]. Economic Survey, 2022, 39(1): 13-23. (in Chinese)
[20] MOHMMED A, LI Z H, AROWOLO A O, et al. Driving factors of CO2 emissions and nexus with economic growth, development and human health in the top ten emitting countries[J]. Resources, Conservation and Recycling, 2019, 148: 157-169.
[21] LI H, ZHAO Y H, ZHENG L, et al. Dynamic characteristics and drivers of the regional household energy-carbon-water nexus in China[J]. Environmental Science and Pollution Research, 2021, 28(39): 55220-55232.
[22] 刘志华, 徐军委. “双碳”目标下中国省域碳排放公平性及其影响因素[J]. 地理科学, 2023, 43(1): 92-100. LIU Z H, XU J W. Equity and influence factors of China's provincial carbon emissions under the “dual carbon” goal[J]. Scientia Geographica Sinica, 2023, 43(1): 92-100. (in Chinese)
[23] 王利宁, 陈文颖. 不同分配方案下各国碳排放额及公平性评价[J]. 清华大学学报(自然科学版), 2015, 55(6): 672-677, 683. WANG L N, CHEN W Y. CO2 emission allowances for typical allocation regimes and their equality assessments[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(6): 672-677, 683. (in Chinese)
[24] MENG F X, LIU G Y, LIANG S, et al. Critical review of the energy-water-carbon nexus in cities[J]. Energy, 2019, 171: 1017-1032.
[25] LI R S, ZHAO R Q, XIE Z X, et al. Water-energy-carbon nexus at campus scale: Case of North China University of Water Resources and Electric Power[J]. Energy Policy, 2022, 166: 113001.
[26] AL-OMARI A, AL-HOURI Z, MUHAMMETOGLU H, et al. Energy and carbon footprints for the urban water cycle in Amman, Jordan[J]. International Journal of Environmental Research, 2022, 16(5): 87.
[27] ZHANG Y, GE T G, LIU J, et al. The comprehensive measurement method of energy conservation and emission reduction in the whole process of urban sewage treatment based on carbon emission[J]. Environmental Science and Pollution Research, 2021, 28(40): 56727-56740.
[28] ROTHAUSEN S G S, CONWAY D. Greenhouse-gas emissions from energy use in the water sector[J]. Nature Climate Change, 2011, 1(4): 210-219.
[29] 郭恰, 陈广, 马艳. 城市水系统关键环节碳排放影响因素分析及减排对策建议[J]. 净水技术, 2021, 40(10): 113-117. GUO Q, CHEN G, MA Y. Analysis on influencing factors of carbon emission in key processes of urban water system and suggestions for emission reduction[J]. Water Purification Technology, 2021, 40(10): 113-117. (in Chinese)
[30] 赵荣钦, 余娇, 肖连刚, 等. 基于“水-能-碳”关联的城市水系统碳排放研究[J]. 地理学报, 2021, 76(12): 3119-3134. ZHAO R Q, YU J, XIAO L G, et al. Carbon emissions of urban water system based on water-energy-carbon nexus[J]. Acta Geographica Sinica, 2021, 76(12): 3119-3134. (in Chinese)
[31] 杨洁. 考虑水足迹、 碳足迹的黄河流域粮食生产资源利用可持续性评价及调控[D]. 西安: 西安理工大学, 2022. YANG J. Sustainability evaluation and regulation of grain production resources utilization in the Yellow River Basin considering water footprint and carbon footprint[D]. Xi'an: Xi'an University of Technology, 2022. (in Chinese)
[32] XU R F, SHI J W, HAO D Q, et al. Research on temporal and spatial differentiation and impact paths of agricultural grey water footprints in the Yellow River Basin[J]. Water, 2022, 14(17): 2759.
[33] 刘子西, 席睿, 黑正军, 等. 宁夏沿黄城市带碳水足迹及其关联关系研究[J]. 水资源与水工程学报, 2023, 34(2): 1-8. LIU Z X, XI R, HEI Z J, et al. Carbon and water footprints of the Yellow River urban belt in Ningxia and their correlations[J]. Journal of Water Resources & Water Engineering, 2023, 34(2): 1-8. (in Chinese)
[34] 朱向梅, 王子莎. 黄河流域碳水足迹评价及时空格局研究[J]. 环境科学与技术, 2020, 43(10): 200-211. ZHU X M, WANG Z S. Study on the assessment of carbon and water footprint and its spatial-temporal pattern in the Yellow River Basin[J]. Environmental Science & Technology, 2020, 43(10): 200-211. (in Chinese)
[35] SONG M, ZHANG L Y, GAO Y, et al. Spatiotemporal evolution and influence mechanism of the carbon footprint of energy consumption at county level in the Yellow River Basin[J]. Science of the Total Environment, 2023, 883: 163710.
[36] 陈静. 流域分布式水文模型的发展现状与展望[J]. 甘肃科技, 2022, 38(21): 28-31. CHEN J. Current status and prospects of the development of distributed hydrologic modeling in watersheds[J]. Gansu Science and Technology, 2022, 38(21): 28-31. (in Chinese)
[37] 代俊峰, 崔远来. 基于SWAT的灌区分布式水文模型: Ⅰ. 模型构建的原理与方法[J]. 水利学报, 2009, 40(2): 145-152. DAI J F, CUI Y L. Distributed hydrological model for irrigation area based on SWAT: I. Principle and method[J]. Journal of Hydraulic Engineering, 2009, 40(2): 145-152. (in Chinese)
[38] 王友芝, 李强坤, 韩金旭, 等. 不确定性条件下分布式农业生产预警模型构建与应用[J]. 农业机械学报, 2023, 54(5): 316-323. WANG Y Z, LI Q K, HAN J X, et al. Distributed agricultural production warning model formulation and application under uncertainties[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(5): 316-323. (in Chinese)
[39] 杨宇, 管群, 胡凯衡, 等. 基于GIS的泥石流流域分布式水文计算系统[J]. 计算机工程, 2010, 36(5): 260-262, 265. YANG Y, GUAN Q, HU K H, et al. GIS-based distributed hydrological computational system of debris-flow watershed[J]. Computer Engineering, 2010, 36(5): 260-262, 265. (in Chinese)
[40] 李栗莹. 分布式水文模型在农业灌溉中的应用研究[J]. 农业与技术, 2020, 40(16): 60-62. LI L Y. A study on the application of distributed hydrological modeling in agricultural irrigation[J]. Agriculture and Technology, 2020, 40(16): 60-62. (in Chinese)
[41] 马晓君, 董碧滢, 于渊博, 等. 东北三省能源消费碳排放测度及影响因素[J]. 中国环境科学, 2018, 38(8): 3170-3179. MA X J, DONG B Y, YU Y B, et al. Measurement of carbon emissions from energy consumption in three northeastern provinces and its driving factors[J]. China Environmental Science, 2018, 38(8): 3170-3179. (in Chinese)
[42] 陈菊, 刘桂香, 朱学峰, 等. 自来水厂加药凝絮过程的智能控制研究[J]. 给水排水, 2009, 35(S1): 463-466. CHEN J, LIU G X, ZHU X F, et al. Intelligent control of dosing flocculation process in water treatment plant[J]. Water & Wastewater Engineering, 2009, 35(S1): 463-466. (in Chinese)
[43] 郑思远. 城镇污水处理厂碳排放研究[J]. 农业与技术, 2023, 43(1): 80-82. ZHENG S Y. Study on carbon emissions from urban wastewater treatment plants[J]. Agriculture and Technology, 2023, 43(1): 80-82. (in Chinese)
[44] 国家市场监督管理总局, 国家标准化管理委员会. 综合能耗计算通则: GB/T 2589—2020[S]. 北京: 中国标准出版社, 2020. State Administration for Market Regulation of the People's Republic of China, Standardization Administration of the People's Republic of China. General rules for calculation of the comprehensive energy consumption: GB/T 2589—2020[S]. Beijing: Standards Press of China, 2020. (in Chinese)
[45] 康亮, 王俊有. 火电厂节水降耗措施[J]. 电力环境保护, 2008, 24(2): 40-43. KANG L, WANG J Y. Discussion on water-saving and consumption reduction measures in thermal power plants[J]. Electric Power Environmental Protection, 2008, 24(2): 40-43. (in Chinese)
[46] 吴晓东. 某钢铁厂水平衡测试及节水措施研究[J]. 人民长江, 2014, 45(S2): 227-228, 231. WU X D. Water balance testing and water-saving measures research in a steel plant[J]. Yangtze River, 2014, 45(S2): 227-228, 231. (in Chinese)
[47] 刘红姝, 王宝庆, 刘东方, 等. 汽车生产企业节水潜力研究[J]. 给水排水, 2009, 35(8): 64-66. LIU H S, WANG B Q, LIU D F, et al. Study on water-saving potential for automobile-manufacturing enterprises[J]. Water & Wastewater Engineering, 2009, 35(8): 64-66. (in Chinese)
[48] SU X, SHAO W W, LIU J H, et al. How does sponge city construction affect carbon emission from integrated urban drainage system?[J]. Journal of Cleaner Production, 2022, 363: 132595.
[49] 姜珊. 水-能源纽带关系解析与耦合模拟[D]. 北京: 中国水利水电科学研究院, 2017. JIANG S. Scientific concept of water-energy nexus and coupling simulation[D]. Beijing: China Institute of Water Resources and Hydropower Research, 2017. (in Chinese)
[50] 吴圣堂, 杨润, 秦建国. 景电二期工程调水对古浪县东部平原地下水的影响[J]. 甘肃水利水电技术, 2004, 40(1): 41-42. WU S T, YANG R, QIN J G. Impact of water transfer from Jingdian II project on groundwater in the eastern plains of Gulang County[J]. Gansu Water Resources and Hydropower Technology, 2004, 40(1): 41-42. (in Chinese)
[51] 李珠, 刘元珍, 闫旭, 等. 引黄入晋: 万家寨引黄工程综述及高新技术应用[J]. 工程力学, 2007, 24(S2): 21-32. LI Z, LIU Y Z, YAN X, et al. Summarization and application of high-tech into Wanjiazhai Projects[J]. Engineering Mechanics, 2007, 24(S2): 21-32. (in Chinese)
[52] 李林军, 邱国玉. 城市水资源开发利用的能源消耗及其经济学分析: 以深圳市为例[J]. 生态经济, 2023, 39(12): 95-101. LI L J, QIU G Y. Analysis on energy consumption and economics of urban water resource development and utilization: A case study in Shenzhen[J]. Ecological Economy, 2023, 39(12): 95-101. (in Chinese)
[53] 张婧雯, 王婷. 山西境内黄河流域2016—2019年间COD及氨氮变化特征[J]. 四川环境, 2020, 39(3): 19-24. ZHANG J W, WANG T. Chemical oxygen demand and ammonia nitrogen variation characteristic of the Yellow River Basin in Shanxi from 2016 to 2019[J]. Sichuan Environment, 2020, 39(3): 19-24. (in Chinese)

基金

国家自然科学基金青年科学基金项目(52009141, 52109042)

PDF(7997 KB)

Accesses

Citation

Detail

段落导航
相关文章

/