Attack detection and security state estimation of cyber-physical systems

GAO Yang, REN Wang, WU Renpu, WANG Weiping, YI Shengwei, HAN Baijing

Journal of Tsinghua University(Science and Technology) ›› 2021, Vol. 61 ›› Issue (11) : 1234-1239.

PDF(1777 KB)
PDF(1777 KB)
Journal of Tsinghua University(Science and Technology) ›› 2021, Vol. 61 ›› Issue (11) : 1234-1239. DOI: 10.16511/j.cnki.qhdxxb.2021.21.008
VULNERABILITY ANALUSIS AND RISK ASSESSMENT

Attack detection and security state estimation of cyber-physical systems

  • {{article.zuoZhe_EN}}
Author information +
History +

Abstract

In the Industry 4.0 context, cyber-physical systems (CPS) need effective security and control capabilities. This study analyzes attack detection and security state estimation based on a cyber-physical system model attacked by an actuator. The attack detection uses a finite time attack detector that ensures that existing attacks can be accurately detected within a preset time limit. An observer is then designed to estimate the system state. A theoretical analysis shows that the observer ensures that the system can immediately adjust when attacked and that the system will reach a safe, stable state. Simulations verify the effectiveness of this method.

Key words

cyber-physical systems / abnormal state detection / safe state estimation / detector / observer

Cite this article

Download Citations
GAO Yang, REN Wang, WU Renpu, WANG Weiping, YI Shengwei, HAN Baijing. Attack detection and security state estimation of cyber-physical systems[J]. Journal of Tsinghua University(Science and Technology). 2021, 61(11): 1234-1239 https://doi.org/10.16511/j.cnki.qhdxxb.2021.21.008

References

[1] CONTI M, DAS S K, BISDIKIAN C, et al. Looking ahead in pervasive computing:Challenges and opportunities in the era of cyber-physical convergence[J]. Pervasive and Mobile Computing, 2012, 8:2-21.
[2] CHIEN D. Systems and methods for suppressing denial of service attacks:U.S. Patent 10,277,626[P]. 2019-04-30.
[3] LI B, XIAO G, LU R, et al. On feasibility and limitations of detecting false data injection attacks on power grid state estimation using D-FACTS devices[J]. IEEE Transactions on Industrial Informatics, 202016(2):854-864.
[4] TEIXEIRA A, AMIN S, SANDBERG H, et al. Cyber security analysis of state estimators in electric power systems[C]//49th IEEE Conference on Decision and Control. Atlanta GA, USA:IEEE Press, 2010:5991-5998.
[5] MO Y, SINOPOLI B. Secure control against replay attacks[C]//47th Annual Allerton Conference on Communication, Control, and Computing. Monticello IL USA:IEEE Press, 2010:911-918.
[6] 王萃清. 虚假数据注入攻击下信息物理系统的弹性控制[D]. 兰州:兰州理工大学, 2018.WANG C Q. Elastic control of information physical system under false data injection attack[D]. Lanzhou:Lanzhou University of Technology, 2018. (in Chinese)
[7] QIN J, LI M, SHI L, et al. Optimal denial-of-service attack scheduling with energy constraint over packet-dropping networks[J]. IEEE Transactions on Automatic Control, 2018, 63(6):1648-1663.
[8] 庄康熙, 孙子文. 针对工业信息物理系统中的拒绝服务攻击建立检测模型[J]. 控制理论与应用, 2020, 37(3):629-638.ZHUANG K X, SUN Z W. A detection model for denial of service attacks in industrial information physics systems[J]. Control Theory and Application, 2020, 37(3):629-638. (in Chinese)
[9] AO W, SONG Y, WEN C, et al. Finite time attack detection and supervised secure state estimation for CPSs with malicious adversaries[J]. Information Sciences, 2018, 451-452:67-82.
[10] CHONG M S, WAKAIKI M, HESPANHA J P. Observability of linear systems under adversarial attacks[C]//American Control Conference. Chicago IL, USA:IEEE Press, 2015:2439-2444.
[11] LU A, YANG G. Secure Luenberger-like observers for cyber-physical systems undersparse actuator and sensor attacks[J]. Automatica, 2018, 98:124-129.
[12] YASSER S, PIERLUIGI N, ALBERTO P, et al. Secure state estimation for cyber-physical systems under sensor attacks:A satisfiability modulo theory approach[J]. IEEE Transactions on Automatic Control, 2017, 62(10):4917-4932.
[13] WU C W, HU Z R, LIU J X, et al. Secure estimation for cyber-physical systems via sliding mode[J]. IEEE Transactions on Cybernetics, 2018, 48(12):3420-3431.
[14] LI Y, SHI L, CHEN T. Detection against linear deception attacks on multi-sensor remote state estimation[J]. IEEE Transactions on Control of Network Systems, 2017, 5(3):846-856.
[15] 敖伟. 信息物理系统中攻击检测与安全状态估计问题研究[D].重庆:重庆大学,2017.AO W. Research on attack detection and security state estimation in information physics system[D]. Chongqing:Chongqing University, 2017. (in Chinese)
[16] 汤奕, 李梦雅, 王琦, 等. 电力信息物理系统网络攻击与防御研究综述(二)检测与保护[J]. 电力系统自动化, 2019, 43(10):1-9.TANG Y, LI M Y, WANG Q, et al. Research review on network attack and defense of power information physical system (ii) detection and protection[J]. Power System Automation, 2019, 43(10):1-9. (in Chinese)
[17] YANG F, WILDE R W. Observers for linear systems with unknown inputs[J]. IEEE Transactions on Automatic Control, 1988, 33(7):677-681.
[18] FAIRMAN F W, MAHIL S S, LUK L. Disturbance decoupled observer design via singular value decomposition[J]. IEEE Transactions on Automatic Control, 1984, 29(1):84-86.
[19] SHOUKRY Y, TABUADA P. Event-triggered state observers for sparse sensor noise/attacks[J]. IEEE Transactions on Automatic Control, 2015, 61(8):2079-2091.
PDF(1777 KB)

Accesses

Citation

Detail

Sections
Recommended

/