Wide-area measurement and early warning system for wide-band oscillations in “double-high” power systems

MA Ningning, XIE Xiaorong, TANG Jian, CHEN Lei

Journal of Tsinghua University(Science and Technology) ›› 2021, Vol. 61 ›› Issue (5) : 457-464.

PDF(3069 KB)
PDF(3069 KB)
Journal of Tsinghua University(Science and Technology) ›› 2021, Vol. 61 ›› Issue (5) : 457-464. DOI: 10.16511/j.cnki.qhdxxb.2021.21.014
OSCILLATION STABILITY

Wide-area measurement and early warning system for wide-band oscillations in “double-high” power systems

  • {{article.zuoZhe_EN}}
Author information +
History +

Abstract

The wide-band oscillation problem caused by the high penetration of renewable energy sources and the high proportion of power electronic equipment, “double-high” systems, seriously affects normal power equipment operation and power system stability. Such systems require on-line monitoring and analyses of the multi-mode and time-varying wide-band oscillation frequency. Traditional wide-area measurement systems (WAMS) can monitor low-frequency oscillations in power grids in real-time. However, they cannot monitor wide-band electromagnetic oscillations. This paper presents a wide-area measurement and early warning system (WAMWS) for monitoring wide-band oscillations in “double-high” power systems. This system has all the functions in the existing WAMS while monitoring wide-band oscillations in “double-high” power systems. The warning system provides wide-band state estimates, oscillation source identification, and security and stability evaluations of the wide-band oscillations. The effectiveness of this system for monitoring wide-band oscillations is verified in simulations. Finally, this paper considers applications of WAMWS.

Key words

“double-high” power systems / renewable power generation / power electronic equipment / wide-band oscillations / wide-area measurement and early warning systems

Cite this article

Download Citations
MA Ningning, XIE Xiaorong, TANG Jian, CHEN Lei. Wide-area measurement and early warning system for wide-band oscillations in “double-high” power systems[J]. Journal of Tsinghua University(Science and Technology). 2021, 61(5): 457-464 https://doi.org/10.16511/j.cnki.qhdxxb.2021.21.014

References

[1] 文云峰, 杨伟峰, 汪荣华, 等. 构建100%可再生能源电力系统述评与展望[J]. 中国电机工程学报, 2020, 40(6):1843-1856. WEN Y F, YANG W F, WANG R H, et al. Review and prospect of toward 100% renewable energy power systems[J]. Proceedings of the CSEE, 2020, 40(6):1843-1856. (in Chinese)
[2] 白建华, 辛颂旭, 刘俊, 等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报, 2015, 35(14):3699-3705. BAI J H, XIN S X, LIU J, et al. Roadmap of realizing the high penetration renewable energy in China[J]. Proceedings of the CSEE, 2015, 35(14):3699-3705. (in Chinese)
[3] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7):1893-1904. ZHOU X X, CHEN S Y, LU Z X, et al.Technology features of the new generation power system in China[J].Proceedings of the CSEE, 2018, 38(7):1893-1904. (in Chinese)
[4] 肖湘宁. 新一代电网中多源多变换复杂交直流系统的基础问题[J]. 电工技术学报, 2015, 30(15):1-14.XIAO X N. Basic problems of the new complex AC-DC power grid with multiple energy resources and multiple conversions[J]. Transactions of China Electrotechnical Society, 2015, 30(15):1-14. (in Chinese)
[5] 谢小荣, 刘华坤, 贺静波, 等. 电力系统新型振荡问题浅析[J]. 中国电机工程学报, 2018, 38(10):2821-2828. XIE X R, LIU H K, HE J B, et al. On new oscillation issues of power systems[J]. Proceedings of the CSEE, 2018, 38(10):2821-2828. (in Chinese)
[6] 姜齐荣, 王玉芝. 电力电子设备高占比电力系统电磁振荡分析与抑制综述[J]. 中国电机工程学报, 2020, 40(22):7185-7201. JIANG Q R, WANG Y Z. Overview of the analysis and mitigation methods of electromagnetic oscillations in power systems with high proportion of power electronic equipment[J]. Proceedings of the CSEE, 2020, 40(22):7185-7201. (in Chinese)
[7] 袁小明, 程时杰, 胡家兵. 电力电子化电力系统多尺度电压功角动态稳定问题[J]. 中国电机工程学报, 2016, 36(19):5145-5154, 5395. YUAN X M, CHENG S J, HU J B. Multi-time scale voltage and power angle dynamics in power electronics dominated large power systems[J]. Proceedings of the CSEE, 2016, 36(19):5145-5154, 5395. (in Chinese)
[8] 陈新, 王赟程, 龚春英. 采用阻抗分析方法的并网逆变器稳定性研究综述[J]. 中国电机工程学报, 2018, 38(7):2082-2094, 2223. CHEN X, WANG Y C, GONG C Y. Overview of stability research for grid-connected inverters based on impedance analysis method[J]. Proceedings of the CSEE, 2018, 38(7):2082-2094, 2223. (in Chinese)
[9] LIU H K, XIE X R, GAO X D, et al. Stability analysis of SSR in multiple wind farms connected to series-compensated systems using impedance network model[J]. IEEE Transactions on Power Systems, 2018, 33(3):3118-3128.
[10] 汤涌, 印永华. 电力系统多尺度仿真与试验技术[M]. 北京:中国电力出版社, 2013. TANG Y, YIN Y H. Multi-scale simulation and test technology of power systems[M]. Beijing:China Electric Power Press, 2013. (in Chinese)
[11] 周俊. 交直流电网数字物理混合仿真技术的研究[D]. 武汉:华中科技大学, 2012. ZHOU J. Study on AC/DC power system digital and physical hybrid simulation[D]. Wuhan:Huazhong University of Science and Technology, 2012. (in Chinese)
[12] 刘云, 蒋卫平, 印永华, 等. 特高压交直流大电网的数模混合实时仿真系统建模[J]. 电力系统自动化, 2008, 32(12):52-56.LIU Y, JIANG W P, YIN Y H, et al. Modeling of analogue-digital hybrid real-time simulation system applied in the UHV AC/DC great power grid[J]. Automation of Electric Power Systems, 2008, 32(12):52-56. (in Chinese)
[13] 黄丹, 陈树勇, 张一驰. 基于广域测量系统响应时间序列的电力系统暂态稳定在线判别[J]. 电网技术, 2019, 43(3):1016-1025. HUANG D, CHEN S Y, ZHANG Y C. Online assessment for transient stability based on response time series of wide-area measurement system[J]. Power System Technology, 2019, 43(3):1016-1025. (in Chinese)
[14] 刘灏, 任小伟, 田建南, 等. 基于K-ESPRIT的快速宽频测量方法[J]. 电力系统自动化, 2020, 44(10):186-192. LIU H, REN X W, TIAN J N, et al. Fast wide-frequency measurement method based on kurtosis-estimation of signal parameters via rotation invariance technique[J]. Automation of Electric Power Systems, 2020, 44(10):186-192. (in Chinese)
[15] KAWABE K, MASUDA M, NANAHARA T. Excitation control method based on wide-area measurement system for improvement of transient stability in power systems[J]. Electric Power Systems Research, 2020, 188:106568.
[16] 宋墩文, 温渤婴, 杨学涛, 等. 广域量测信息大数据特征分析及应用策略[J].电网技术, 2017, 41(1):157-163. SONG D W, WEN B Y, YANG X T, et al. Big data feature analysis and application strategy of wide area measurement information[J]. Power System Technology, 2017, 41(1):157-163. (in Chinese)
[17] ARPANAHI M K, ALHELOU H H, SIANO P. A novel multi-objective OPP for power system small signal stability assessment considering WAMS uncertainties[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5):3039-3050.
[18] 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9):2-11. KANG C Q, YAO L Z. Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9):2-11. (in Chinese)
[19] 汤广福, 庞辉, 贺之渊. 先进交直流输电技术在中国的发展与应用[J]. 中国电机工程学报, 2016, 36(7):1760-1771. TANG G F, PANG H, HE Z Y. R&D and application of advanced power transmission technology in China[J]. Proceedings of the CSEE, 2018, 36(7):1760-1771. (in Chinese)
[20] 祁琪, 姜齐荣, 许彦平. 智能配电网柔性互联研究现状及发展趋势[J]. 电网技术, 2020, 44(12):4664-4676.QI Q, JIANG Q R, XU Y P. Research status and development prospect of flexible interconnection for smart distribution networks[J]. Power System Technology, 2020, 44(12):4664-4676. (in Chinese)
[21] WANG L, XIE X R, JIANG Q R, et al. Investigation of SSR in practical DFIG-based wind farms connected to a series-compensated power system[J]. IEEE Transactions on Power Systems, 2015, 30(5):2772-2779.
[22] MAN J F, XIE X R, XU S K, et al. Frequency-coupling impedance model-based analysis of a high-frequency resonance incident in an actual MMC-HVDC system[J]. IEEE Transactions on Power Delivery, 2020, 35(6):2963-2971.
[23] 马宁宁, 谢小荣, 贺静波, 等. 高比例新能源和电力电子设备电力系统的宽频振荡研究综述[J]. 中国电机工程学报, 2020, 40(15):4720-4732. MA N N, XIE X R, HE J B, et al. Review of wide-band oscillation in renewable and power electronics highly integrated power systems[J]. Proceedings of the CSEE, 2020, 40(15):4720-4732. (in Chinese)
[24] LIU H K, XIE X R, HE J B, et al. Subsynchronous interaction between direct-drive PMSG based wind farms and weak AC networks[J]. IEEE Transactions on Power Systems, 2017, 32(6):4708-4720.
[25] 刘晓莉, 曾祥晖, 黄翊阳, 等. 联合粒子滤波和卷积神经网络的电力系统状态估计方法[J]. 电网技术, 2020, 44(9):3361-3367.LIU X L, ZENG X H, HUANG Y Y, et al. State estimation based on particle filtering and convolutional neural networks for power systems[J]. Power System Technology, 2020, 44(9):3361-3367. (in Chinese)
[26] 李中付, 华宏星, 宋汉文, 等. 用时域峰值法计算频率和阻尼[J]. 振动与冲击, 2001, 20(3):5-8.LI Z F, HUA H X, SONG H W, et al. Identification of frequencies and damping ratios with time domain peak values[J]. Journal of Vibration and Shock, 2001, 20(3):5-8. (in Chinese)
[27] 谢小荣, 王路平, 贺静波, 等. 电力系统次同步谐振/振荡的形态分析[J]. 电网技术, 2017, 41(4):1043-1049. XIE X R, WANG L P, HE J B, et al. Analysis of subsynchronous resonance/oscillation types in power systems[J]. Power System Technology, 2017, 41(4):1043-1049. (in Chinese)
PDF(3069 KB)

Accesses

Citation

Detail

Sections
Recommended

/