Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2014, Vol. 54 Issue (2): 212-216    
  论文 本期目录 | 过刊浏览 | 高级检索 |
管道喷涂机器人喷枪运动速度优化
潘玉龙1,2,王国磊1,朱丽3,陈雁1,陈恳1()
2. 空军预警学院 黄陂士官学校, 武汉 430019
3. 成都飞机工业(集团)有限责任公司 制造工程部, 成都 610092);
Optimization of spray gun speed for pipe painting robots
Yulong PAN1,2,Guolei WAN1,Li ZHU3,Yan CHEN1,Ken CHEN1()
1. Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, China
2. Huangpi Noncommissioned Officer School, Air Force Early Warning Academy, Wuhan 430019, China
3. Department of Manufacturing Engineering, Chengdu Aircraft Industrial (Group) Co., Ltd, Chengdu 610091, China
全文: PDF(1361 KB)   HTML
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

为提高机器人喷涂时涂层厚度均匀性,首先根据机器人喷涂时涂层形状呈椭圆形的实际情况,选择双β分布喷枪模型对涂层厚度分布进行描述,在此基础上分析喷枪运动过程中涂层厚度累积机理。通过喷枪匀速运动条件下的圆形管道喷涂实验,研究管道内壁涂层厚度与涂料涂着效率变化规律之间的关系,提出机器人喷涂作业时喷枪运动速度优化方法,即保持喷枪运动速度与涂料涂着效率之间比值恒定。实验结果表明,该速度优化方法可有效提高涂层厚度均匀性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘玉龙
王国磊
朱丽
陈雁
陈恳
关键词 机器人喷枪模型涂层厚度均匀性涂着效率喷枪运动速度    
Abstract

Paint coating thickness uniformity is investigated with a double beta spray gun model to investigate the coating thickness distribution assuming that the robot spraying coating shape is oval. Then, the coating mechanism is analyzed for the spray gun model. The relationship between the coating thickness variation and the coating transfer efficiency is studied experimentally with a uniform gun motion speed. An optimal spray gun motion speed is found with the best results found for a constant ratio of the spray gun speed to the paint transfer efficiency. The experimental results indicate that the speed optimization method effectively improves the coating thickness uniformity.

Key wordsrobot    spray gun model    coating thickness uniformity    coating transfer efficiency    spray gun moving speed
收稿日期: 2012-09-07      出版日期: 2014-02-15
ZTFLH:     
基金资助:国家 “八六三” 高技术项目 (2009AA043701);清华大学摩擦学国家重点实验室项目 (SKLT09A03)
引用本文:   
潘玉龙, 王国磊, 朱丽, 陈雁, 陈恳. 管道喷涂机器人喷枪运动速度优化[J]. 清华大学学报(自然科学版), 2014, 54(2): 212-216.
Yulong PAN, Guolei WAN, Li ZHU, Yan CHEN, Ken CHEN. Optimization of spray gun speed for pipe painting robots. Journal of Tsinghua University(Science and Technology), 2014, 54(2): 212-216.
链接本文:  
http://jst.tsinghuajournals.com/CN/  或          http://jst.tsinghuajournals.com/CN/Y2014/V54/I2/212
  涂层厚度累积过程
  不同截面上涂层厚度分布曲线
  平板喷涂实验涂层厚度分布
  圆形管道内壁喷涂
  圆形管道内壁厚度测量结果
  优化后喷枪运动速度曲线
  圆形管道内壁涂层厚度分布
[1] Seegmiller N, Franks R, Bailiff J. Precision Robotic Coating Application and Thickness Control Optimization for F-35 Final Finishes [R]. SAE 2009-01-3280. SAE 2009 Aero Tech Congress & Exhibition. Seattle, WA, USA, 2009.
[2] 周光华, 谭延江. 新型雷达吸波涂料涂装技术研究[J]. 表面技术, 2011, 1(2): 68-70. ZHOU Guanghua, TAN Yanjiang. Study on painting technology of the novel radar absorbing coating[J]. Surface Technology, 2011, 1(2): 68-70. (in Chinese)
[3] 张明. 浅谈机器人喷涂的膜厚控制[J]. 现代涂料与涂装, 2006, 9(6): 31-33. ZHANG Ming. Brief introduction of film thickness control during paint spraying by robot[J]. Modern Paint & Finishing, 2006, 9(6): 31-33. (in Chinese)
[4] 王国磊, 陈恳, 陈雁, 等. 变参数下的空气喷枪涂层厚度分布建模[J]. 吉林大学学报: 工学版, 2012, 1(1): 188-192. WANG Guolei, CHEN Ken, CHEN Yan, et al.Film thickness distribution model with variable parameters for air spray gun[J]. Journal of Jilin University: Engineering and Technology Edition, 2012, 1(1): 188-192. (in Chinese)
[5] CHEN Heping, XI Ning. Automated tool trajectory planning of industrial robots for painting composite surfaces[J]. Adv Manuf Technol, 2008, 35: 680-696.
[6] 曾勇, 龚俊. 面向自然二次曲面的喷涂机器人喷枪轨迹优化[J]. 中国机械工程, 2011, 3(2): 282-290. ZENG Yong, GONG Jun. Trajectory optimization of spray painting robot for natural quadric surfaces[J]. China Mechanical Engineering, 2011, 3(2): 282-290. (in Chinese)
[7] 陈伟, 赵德安, 梁震. 喷涂机器人的喷枪轨迹优化设计与实验[J]. 中国机械工程, 2011, 17(9): 2104-2108. CHEN Wei, ZHAO Dean, LIANG Zhen. Design of tool path planning of robotic spray painting and its experiments[J]. China Mechanical Engineering, 2011, 17(9): 2104-2108. (in Chinese)
[8] Freund E, Rokossa D, Rossmann J. Process-oriented approach to an efficient off-line programming of industrial robots [C]∥Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society. Piscataway, NJ, USA: IEEE, 1998: 208-213.
[9] Suh S H, Woo I K, Noh S K. Development of an automatic trajectory planning system (ATPS) for spray painting robots [C]∥Proceedings of IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1991: 1948-1955.
[10] Balkan T, Arikan M A S. Surface and process modeling and off line programming for robotic spray painting of curved surfaces[J]. Journal of Robotic Systems, 2000, 17(9): 479-494.
[11] Balkan T, Arikan M A S. Modeling of paint flow rate flux for circular paint sprays by using experimental paint thickness distribution[J]. Mechanics Research Communications, 1999, 26(5): 609-617.
[12] 张永贵, 黄玉美, 高峰, 等. 喷漆机器人空气喷枪的新模型[J]. 机械工程学报, 2006, 42(11): 226-233. ZHANG Yonggui, HUANG Yumei, GAO Feng, et al.New model for air spray gun of robotic spray painting[J]. Chinese Journal of Mechanical Engineering, 2006, 42(11): 226-233. (in Chinese)
[1] 李政清, 侯森浩, 韦金昊, 唐晓强. 面向仓储物流的平面索并联机器人视觉自标定方法[J]. 清华大学学报(自然科学版), 2022, 62(9): 1508-1515.
[2] 张文, 丁雨林, 陈咏华, 孙振国. 基于外部视觉与机载IMU组合的爬壁机器人自主定位方法[J]. 清华大学学报(自然科学版), 2022, 62(9): 1524-1531.
[3] 刘鹏, 乔心州. 大跨度完全约束空间3-DOF柔索驱动并联机器人稳定性灵敏度研究[J]. 清华大学学报(自然科学版), 2022, 62(9): 1548-1558.
[4] 刘天云. 大型填筑工程3D打印技术与应用[J]. 清华大学学报(自然科学版), 2022, 62(8): 1281-1291.
[5] 王煜天, 张瑞杰, 吴军, 汪劲松. 移动式混联喷涂机器人的动力学性能波动评价[J]. 清华大学学报(自然科学版), 2022, 62(5): 971-977.
[6] 刘志, 陈恳, 徐静. 基于模型和数据驱动的机器人6D位姿估计方法[J]. 清华大学学报(自然科学版), 2022, 62(3): 391-399.
[7] 孟齐志, 谢福贵, 刘辛军, 袁馨, 薛龙. 高速高负载并联机器人设计[J]. 清华大学学报(自然科学版), 2022, 62(3): 416-426.
[8] 赵雅聪, 王启明. FAST索牵引并联机器人的动力学建模与仿真[J]. 清华大学学报(自然科学版), 2022, 62(11): 1772-1779.
[9] 殷家宁, 姜鹏, 陈明, 姚蕊. FAST索驱动并联机器人与Stewart平台结合的动力学建模方法[J]. 清华大学学报(自然科学版), 2022, 62(11): 1764-1771.
[10] 黎帆, 李东兴, 王殿君, 陈亚, 唐晓强. 基于欠驱动并联索机构的肩关节助力外骨骼[J]. 清华大学学报(自然科学版), 2022, 62(1): 141-148.
[11] 陈璐, 关立文, 刘春, 陈志雄, 薛俊. 基于结构光三维视觉测量的机器人制孔姿态修正方法[J]. 清华大学学报(自然科学版), 2022, 62(1): 149-155.
[12] 关立文, 陈志雄, 刘春, 薛俊. 钻铆机器人静刚度建模及优化[J]. 清华大学学报(自然科学版), 2021, 61(9): 965-971.
[13] 邓青, 施成浩, 王辰阳, 陈彬, 高扬, 张辉. 基于E-LVC技术的重大综合灾害耦合情景推演方法[J]. 清华大学学报(自然科学版), 2021, 61(6): 487-493.
[14] 彭发忠, 段金昊, 邵珠峰, 张兆坤, 王道明. 索驱动TBot及Delta高速并联机器人的性能对比分析[J]. 清华大学学报(自然科学版), 2021, 61(3): 183-192.
[15] 王晓光, 吴军, 林麒. 欠约束绳牵引并联支撑系统运动学分析与鲁棒控制[J]. 清华大学学报(自然科学版), 2021, 61(3): 193-201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn