微生物污垢的生长模型与受力分析

杨倩鹏, 陈晓东, 田磊, 史琳

清华大学学报(自然科学版) ›› 2014, Vol. 54 ›› Issue (2) : 247-252.

PDF(3515 KB)
PDF(3515 KB)
清华大学学报(自然科学版) ›› 2014, Vol. 54 ›› Issue (2) : 247-252.
论文

微生物污垢的生长模型与受力分析

作者信息 +

Biofouling growth model and force analysis

Author information +
文章历史 +

摘要

换热设备表面形成的微生物污垢严重影响了换热效率和系统安全。为了减少微生物污垢,需要研究微生物污垢的生长机理和受力特性。该文采用3维细胞自动机模型,对微生物污垢进行了生长模拟,并模拟了混合菌种的相互抑制。针对微生物污垢形状多样的特点,提出了形状因子的概念,分析了形状因子与受力的关系。该文细胞自动机模型采用了换热设备的代表性菌种——枯草芽孢杆菌和鳗鱼气单胞菌。采用该模型模拟两种菌种的生长机理和相互抑制,结果发现换热设备抑垢应侧重于枯草芽孢杆菌。该文提出的形状因子能较好量化污垢形状,有效地描述了3种典型污垢形状。形状因子简化了污垢形状与受力的关联分析,有助于不同形状污垢的对比。

Abstract

Biofouling on heat exchanger surfaces reduces the heat transfer rate and the system security. Thus, more investigations are needed on biofouling growth mechanisms and the forces acting on the biofouling. This study uses a three dimensional cellular automata model to simulate biofouling growth. Reciprocal inhibition between different bacteria strains is also simulated. A shape factor concept is then used to describe the various biofouling shapes to analyze the forces on the biofouling. The cellular automata model simulates Bacillus subtilis and Aeromonas ichthiosmia as typical heat exchanger bacteria strains. The model simulates the biofouling growth and reciprocal inhibition to show that the heat exchanger biofouling inhibition should focus on Bacillus subtilis. The shape factors for three typical shapes used in this work accurately model the biofouling shapes. The shape factors simplify the force analyses and are useful for comparing different biofouling shapes.

关键词

能源管理与节能 / 微生物污垢 / 细胞自动机模型 / 形状因子

Key words

energy management and saving / biofouling / cellular automata model / shape factor

引用本文

导出引用
杨倩鹏, 陈晓东, 田磊, 史琳. 微生物污垢的生长模型与受力分析[J]. 清华大学学报(自然科学版). 2014, 54(2): 247-252
Qianpeng YANG, Xiaodong CHEN, Lei TIAN, Lin SHI. Biofouling growth model and force analysis[J]. Journal of Tsinghua University(Science and Technology). 2014, 54(2): 247-252
中图分类号:     

参考文献

[1] TIAN Lei, CHEN Xiaodong, YANG Qianpeng, et al.Effect of silica dioxide particles on the evolution of biofouling by Bacillus subtilis in plate heat exchangers relevant to a heat pump system used with treated sewage[J].Chemical Engineering Journal, 2012, 188: 47-56.
[2] TIAN Lei, CHEN Xiaodong, YANG Qianpeng, et al.Effect of calcium ions on the evolution of biofouling by Bacillus subtilis in plate heat exchangers simulating the heat pump system used with treated sewage in the 2008 Olympic Village[J]. Colloids and Surfaces B: Biointerfaces, 2012, 94: 309-316.
[3] 史琳, 昝成, 杨文言. 城镇二级出水换热表面混合污垢的成分及形貌[J]. 清华大学学报: 自然科学版, 2009, 49(2): 236-239. SHI Lin, ZAN Cheng, YANG Wenyan. Composition and morphology of composite fouling by municipal secondary effluent on heat transfer surfaces[J]. J Tsinghua Univ: Sci and Tech, 2009, 49(2): 236-239. (in Chinese)
[4] TIAN Lei, CHEN Xiaodong, YANG Qianpeng, et al.Interaction effects of silica dioxide particles and calcium ions on the evolution of biofouling in plate heat exchangers relevant to a heat pump heat recovery system from treated sewage[J]. International Journal of Materials and Product Technology, 2012, 44(1/2): 67-76.
[5] Eberl H J, ParkerD F, Vanloosdrecht M C. A new deterministic spatiotemporal continuum model for biofilm development[J]. Computational and Mathematical Methods in Medicine, 2001, 3(3): 161-175.
[6] Laspidou C S, Rittmann B E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass[J]. Water Research, 2002, 36: 2711-2720.
[7] Laspidou C S, Rittmann B E. Non-steady state modeling of extracellular polymeric substances, soluble microbial products, and active and inert biomass[J]. Water Research, 2002, 36: 1983-1992.
[8] Eberl H J, Khassehkhan H, Demaret L. A mixed-culture model of a probiotic biofilm control system[J]. Computational and Mathematical Methods in Medicine, 2010, 11(2): 99-118.
[9] Picioreanu C, Kreft J U, Van Loosdrecht M C. Particle-based multidimensional multispecies biofilm model[J]. Applied and Environmental Microbiology, 2004, 70(5): 3024-3040.
[10] Habimana O, Guillier L, Kulakauskas S, et al.Spatial competition with Lactococcus lactis in mixed-species continuous-flow biofilms inhibits Listeria monocytogenes growth[J]. Biofouling, 2011, 27(9): 1065-1072.
[11] Hao S, Moran B, Chopp D. Biofilm growth: Perspectives on two-phase mixture flow and fingerings formation [C]// IUTAM Symposium on Mechanics and Reliability of Actuating Materials. New York, NJ: Springer Press, 2006: 273-290.
[12] Rice A R, Hamilton M A, Camper A K. Movement, replication, and emigration rates of individual bacteria in a biofilm[J]. Microbial Ecology, 2003, 45: 163-172.
[13] 杨倩鹏, 陈晓东, 田磊, 等. 不同营养下混合菌种微生物污垢生长机理与交互作用[J]. 化工学报, 2013, 64(3): 1036-1041. YANG Qianpeng, CHEN Xiaodong, TIAN Lei, et al.Growth and interaction mechanism of multi-strain biofouling under different nutrient levels[J]. CIESC Journal, 2013, 64(3): 1036-1041. (in Chinese)
[14] Ivleva N P, Wagner M, Horn H, et al.Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy[J]. Analytical and Bioanalytical Chemistry, 2009, 393: 197-206.
[15] YANG Qianpeng, Wilson D I, CHEN Xiaodong, et al.Experimental investigation of interactions between the temperature field and biofouling in a synthetic treated sewage stream[J]. Biofouling, 2013, 29(5): 513-523.
[16] Dobretsov S, Teplitski M, Paul V. Mini-review: Quorum sensing in the marine environment and its relationship to biofouling[J]. Biofouling, 2009, 25(5): 413-427.
[17] TIAN Lei, YANG Qianpeng, LI Minzhi, et al. Reuse of thermal energy in municipal reclaimed water: Assessment for transmission distance [J]. Applied Mechanics and Materials, 2012, 148/149: 883-886.
[18] Abe Y, Polyakov P, Skali-Lami S, et al.Elasticity and physicochemical properties during drinking water biofilm formation[J]. Biofouling, 2011, 27(7): 739-750.

基金

国家自然科学基金面上项目(50976060);国家 “九七三” 重点基础研究项目 (2010CB227305)

PDF(3515 KB)

Accesses

Citation

Detail

段落导航
相关文章

/