Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2014, Vol. 54 Issue (3): 314-319    
  论文 本期目录 | 过刊浏览 | 高级检索 |
煤沥青原料性质和反应条件对中间相炭微球粒度分布和形貌的影响
熊杰明1(),陈潇1,孙国娟2,葛明兰1,黄海燕1,杨靖丰1
2. 中海油天津化工研究设计院, 天津 300131
Effects of raw material property of coal tar pitch and reaction conditions on particle size distribution and appearance of mesocarbon microbeads
Jieming XIONG1(),Xiao CHEN1,Guojuan SUN2,Minglan GE1,Haiyan HUANG1,Jingfeng YANG1
1. College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
2. CNOOC Tianjin Chemical Research & Design Institute, Tianjin 300131, China
全文: PDF(3642 KB)   HTML
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

工业应用需要粒度均匀、球形度良好的中间相炭微球(MCMB)。反应条件、原料性质对MCMB性能有很大影响。以煤软沥青为原料,采用热缩聚法制备MCMB, 分别考察了反应过程温度、时间、压力等反应条件,以及原料软化点、原生喹啉不溶物(QI)等性质对MCMB粒度分布、形貌的影响情况。结果表明: 在一定范围内,热聚温度的升高,或聚合时间的延长,都会使炭微球粒径逐渐增大,粒度分布变窄,粒度变得均匀; 过低的反应压力使轻组分逸出,体系粘度升高,得不到规则的小球; 原料软化点低、体系粘度小,有利于小球的自由运动、融并、生长成粒度均匀的MCMB; 原料中QI是MCMB形成和发展的核心,原生QI粒度差别太大,会导致MCMB大小不均匀,甚至两极分化; 除去原料中粒径过大的QI, 有利于得到粒度均匀的MCMB。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
熊杰明
陈潇
孙国娟
葛明兰
黄海燕
杨靖丰
关键词 煤沥青原料性质反应条件中间相炭微球(MCMB)直径分布形貌    
Abstract

Industrial application needs mesocarbon microbeads (MCMB) with even particle size distribution and good sphericity, while the reaction conditions and raw material property may influence the MCMB property stated above. MCMB was prepared by thermal polymerization with coal tar pitch as the raw material, with the effects of reaction conditions i.e., the temperature, time and pressure, as well as raw material properties including the soft point and quinolone-insoluble (QI) on the particle size distribution and appearance of MCMB being investigated. The results show that within a certain range, the increase of the reaction temperature or reaction time during thermal polymerization helps the grow of MCMB, and the particle size distribution becomes more narrow with granularity becoming homogeneous. Too low pressure makes the light components of the reaction system escape and the system viscosity quickly increase, which is not conducive to gain the spherical appearance. Low soft points of raw materials and small viscosities of the reaction system are helpful for the free motion and fusion of the microbeads growing to MCMB with even particle sizes. The primary QI in the raw material is the core for the formation and growth of MCMB, and if the particle sizes of the primary QI are too different, the size of MCMB will become uneven with MCMB polarized. The MCMB with even particle sizes can be obtained by removing the QI with too large particle sizes in the raw material.

Key wordscoal tar pitch    property of raw material    reaction condition    mesocarbon microbead (MCMB)    particle size distribution    appearance
收稿日期: 2014-01-20      出版日期: 2014-03-15
ZTFLH:     
基金资助:北京市教委科学研究面上项目(KM201210017003);北京市大学生研究训练URT项目(2013X00030)
引用本文:   
熊杰明, 陈潇, 孙国娟, 葛明兰, 黄海燕, 杨靖丰. 煤沥青原料性质和反应条件对中间相炭微球粒度分布和形貌的影响[J]. 清华大学学报(自然科学版), 2014, 54(3): 314-319.
Jieming XIONG, Xiao CHEN, Guojuan SUN, Minglan GE, Haiyan HUANG, Jingfeng YANG. Effects of raw material property of coal tar pitch and reaction conditions on particle size distribution and appearance of mesocarbon microbeads. Journal of Tsinghua University(Science and Technology), 2014, 54(3): 314-319.
链接本文:  
http://jst.tsinghuajournals.com/CN/  或          http://jst.tsinghuajournals.com/CN/Y2014/V54/I3/314
原料编号 SP /℃ QI质量分数/% TI质量分数/%
软沥青1# 32.7 7.51 16.82
软沥青2# 32.3 2.31 10.20
软沥青3# 30.2 1.46 8.74
软沥青4# 20.6 0.10 8.63
硬质沥青 110.0 6.80 18.70
中温沥青 81.5 2.57 12.57
煤焦油 <10 1.32 4.20
  沥青原料的性质
实验仪器 型号 生产厂家
离心机 LDJ-5C 上海安亭科学仪器厂
搅拌反应釜 KCF-10 烟台牟平曙光精密仪器厂
扫描电镜 SSX-550 日本岛津
激光粒度分析仪 RISE-2008 济南润之科技有限公司
  主要设备
  不同热聚温度制备的MCMB的粒度分布微分曲线
  不同热聚合时间制备的MCMB粒度分布微分曲线
  不同表压下制备的MCMB形貌
  不同软化点的原料制备的MCMB形貌
  不同QI含量的原料制备的MCMB形貌
[1] Hidemasa H. Carbonaceous mesophase: History and prospects[J]. Carbon, 1988, 26(2): 139-156.
[2] Yamada Y, Imamura T, Kakiyama H, et al.Characteristics of mesocarbon microbeads separated from pitch[J]. Carbon, 1974, 12(3): 307-319.
[3] KIM Cheol Joong, RYU Seung Kon, RHEE Bo Sung. Properties of coal tar pitch based mesophase separated by high-temperature centrifugation[J]. Carbon, 1993, 31(5): 833-838.
[4] Honda H. Mesophase pitch and mesocarbon microbeads[J]. Molecular Crystals and Liquid Crystals, 1983, 94(1): 97-108.
[5] Tokumitsu K, Fujimoto H, Mabuchi A, et al.High capacity carbon anode for Li-ion battery: A theoretical explanation[J]. Carbon, 1999, 37(10): 1599-1605.
[6] 许斌, 陈鹏. 中间相炭微珠( MCMB)的开发、性质和应用[J]. 新型碳材料, 1996, 11(3): 4-8. XU Bin, CHEN Peng. Exploitation, property and application of mesocarbon microbeads (MCMB)[J]. New Carbon Materials, 1996, 11(3): 4-8. (in Chinese)
[7] 高燕, 宋怀河, 陈晓红, 等. 不同β树脂含量的沥青中间相炭微球形态及其成型性能研究[J]. 新型炭材料, 2001, 16(2): 32-35. GAO Yan, SONG Huaihe, CHEN Xiaohong, et al.The morphology and moulding properties of mesocarbon microbeads (MCMBs) with different β resins[J]. New Carbon Materials, 2001, 16(2): 32-35. (in Chinese)
[8] Kodama M, Fujirua T, Esumi K, et al.Preparation of meso-carbon microbeads with a narrow size distribution[J]. Carbon, 1988, 26(4): 595-598.
[9] Yoona S H, Park Y D, Mochida I. Preparation of carbonaceous spheres from suspensions of pitch materials[J]. Carbon, 1992, 30(5): 781-786.
[10] 李同起, 王成扬, 郑嘉明, 等. 非均相成核中间相炭微球的形成过程及其结构演变[J]. 新型碳材料, 2004, 19(4): 281-286. LI Tongqi, WANG Chengyang, ZHENG Jiaming, et al.Formation of MCMB through heterogeneous nucleation and the development of their structures[J]. New Carbon Materials, 2004, 19(4): 281-286. (in Chinese)
[11] Kodama M, Shimizu N, Fujiura T, et al.Preparation and characterization of cation-exchanger using meso-carbon microbeads prepared by emulsion method[J]. Carbon, 1990, 28(1): 199-205.
[12] YANG Yongzhen, LIU Xuguang, ZHANG Chunyi, et al.Controllable synthesis and modification of carbon microspheres from deoiled asphalt[J]. Journal of Physics and Chemistry of Solids, 2009, 71(3): 235-241.
[13] WANG Zuoshan, LI Fengsheng. Preparation of hollow carbon nanospheres via explosive detonation[J]. Materials Letters, 2009, 63(1): 58-60.
[14] Kodama M, Fujiura T, Ikawa E, et al.Characterization of meso-carbon microbeads prepared by emulsion method[J]. Carbon, 1991, 29(l): 43-49.
[15] WANG Yonggang, Egashira M, Ishida S, et al.Microstructure of mesocarbon microbeads prepared from synthetic isotropic naphthalene pitch in the presence of carbon black[J]. Carbon, 1999, 37(2): 307-314.
[16] Pérez M, Granda M, Santamaría R, et al.Preventing mesophase growth in petroleum pitches by the addition of coal tar pitch[J]. Carbon, 2003, 41: 1851-1864.
[17] Mora E, Santamaría R, Blanco C, et al.Mesophase development in petroleum and coal-tar pitches and their blends[J]. Journal of Analytical and Applied Pyrolysis, 2003, 68: 409-424.
[18] Lü Yonggen, LING Licheng, WU Dong, et al.Preparation of mesocarbon microbeads from coal tar[J]. Journal of Material Science, 1999, 34(16): 4043-4050.
[19] 王成扬, 姜卉, 李鹏, 等. 原生QI成核中间相炭微球的结构[J]. 新型炭材料, 2000, 15(4): 9-12. WANG Chengyang, JIANG Hui, LI Peng, et al.Structure of mesocarbon microbeads formed with original QI as seed crystal[J]. New Carbon Materials, 2000, 15(4): 9-12. (in Chinese)
[1] 满轲, 刘晓丽, 宋志飞, 郭占峰, 柳宗旭, 于云鹤. 岩石静态与动态断裂韧性的宏细观试验[J]. 清华大学学报(自然科学版), 2021, 61(8): 799-808.
[2] 朱志明, 程世佳, 于英飞, 符平坡. 焊接电弧形貌判别模型及钨极高度的影响规律[J]. 清华大学学报(自然科学版), 2020, 60(4): 285-291.
[3] 孙可平, 杨东超, 常旭, 朱衡, 鲁沛昕, 陈恳. 爬行器驱动轮与套管管壁斜压过程分析[J]. 清华大学学报(自然科学版), 2019, 59(12): 1016-1028.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn