Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2014, Vol. 54 Issue (4): 530-535    
  本期目录 | 过刊浏览 | 高级检索 |
无侧滑角传感器的飞翼无人机抗侧风控制方法
王乾1,2,李清1,2(),程农1,2,宋靖雁1
2. 中航工业西安飞行自动控制研究所,陕西 西安 710065
Counteracting crosswind control method for flying-wing UAV without sideslip sensors
Qian WANG1,2,Qing LI1,2(),Nong CHENG1,2,Jingyan SONG1
1. Department of Automation, Tsinghua University, Beijing 100084, China
2. AVIC Xi'an Flight Automatic Control Research Institute, Xi'an 710065, China
全文: PDF(1866 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

飞翼布局无人机(UAV)由于缺少垂直尾翼的安定作用,航向通道不稳定或具有弱稳定性,侧风条件下容易引起侧滑,影响航迹跟踪精度。针对一种没有安装侧滑角传感器的小型飞翼无人机,根据惯性器件测量数据和无人机气动参数,使用扩展Kalman滤波方法估计无人机的侧滑角大小并控制消除侧滑。在抑制侧滑的条件下,推导建立了无人机航迹跟踪侧向运动的非线性模型,利用反馈线性化方法,将运动模型转化为带有扰动的线性模型,进而引入虚拟控制变量,使用保性能H鲁棒控制器设计方法,优化得到航迹跟踪反馈控制参数。仿真结果表明: 该方法能够估计并有效抑制侧风条件下飞翼无人机侧滑等干扰,实现航迹的精确跟踪。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 飞翼无人机抗侧风航迹跟踪侧滑角估计H∞控制    
Abstract

Flying-wing unmanned aerial vehicles (UAV) have poor stability or are unstable in the lateral direction due to their tailless configuration, which can cause sideslip and affect tracking accuracy in the presence of crosswinds. This paper presents an extended Kalman filter method for estimating the angle-of-sideslip using inertial sensor data and aerodynamic data for a small flying-wing UAV without sideslip sensors. The estimation result is employed as a feedback to control the split drag rudders for reducing sideslip. In addition, the paper presents a nonlinear UAV lateral tracking model for small sideslip. The model is transformed to a linear system relative to the crosswind disturbance using feedback linearization. A performance restricted H robust control design method is implemented based on the linear system by introducing a virtual control variable. Robust feedback control parameters are obtained from the optimization result. Simulations show the validity of the method in counteracting crosswind effects for accurate tracking.

Key wordsflying-wing unmanned aerial vehicle    counteracting crosswind    track following    angle-of-sideslip estimation    H∞ control
收稿日期: 2013-08-13      出版日期: 2014-04-15
基金资助:国家自然科学基金资助项目 (61174168);航空科学基金资助项目 (20128058006)
引用本文:   
王乾,李清,程农,宋靖雁. 无侧滑角传感器的飞翼无人机抗侧风控制方法[J]. 清华大学学报(自然科学版), 2014, 54(4): 530-535.
Qian WANG,Qing LI,Nong CHENG,Jingyan SONG. Counteracting crosswind control method for flying-wing UAV without sideslip sensors. Journal of Tsinghua University(Science and Technology), 2014, 54(4): 530-535.
链接本文:  
http://jst.tsinghuajournals.com/CN/  或          http://jst.tsinghuajournals.com/CN/Y2014/V54/I4/530
  飞翼布局无人机系统
参数 数值
翼展/m 2.6
翼面积/m2 1.327
总质量/kg 8.35
转动惯量/kg·m2 1.93800.01300.62100.01302.534
航向静稳定系数Cnβ -0.000 51
航向阻尼系数Cnr 0.001 1
  飞翼无人机FWUAV主要参数
  侧偏距误差对比
  偏航角误差对比
  侧滑角响应与侧滑角估计值对比
  滚转角响应结果对比
[1] 王艳丽,周洲,张琳. 飞翼无人机侧风着陆控制方法研究 [J]. 飞行力学, 2009, 27(1): 24-27. WANG Yanli, ZHOU Zhou, ZHANG Lin. Flying wing UAV crosswind landing control method[J].Flight Dynamics, 2009, 27(1): 24-27. (in Chinese)
[2] 许东松,刘星宇,王立新. 变化风场对舰载飞机着舰安全性影响[J]. 北京航空航天大学学报, 2010, 36(1): 77-81. XU Dongsong, LIU Xingyu, WANG Lixin. Influence of changeful wind on landing safety of carrier-based airplane[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(1): 77-81. (in Chinese)
[3] 杨一栋. 飞机抗侧风着陆系统[J]. 航空学报, 1988, 9(7): 393-397. YANG Yidong. Counteracting sidewind control system for aircraft landing[J].Acta Aeronautica et Astronautica Sinica, 1988, 9(7): 393-397. (in Chinese)
[4] Brezoescnu A, Espinoza T, Castillo P, et al.Adaptive trajectory following for a fixed-wing UAV in presence of crosswind[J]. Journal of Intelligent & Robotic Systems, 2013, 69: 257-271.
[5] Sadat-Hoseini H, Fazelzadeh S, Rasti A, et al.Final approach and flare control of a flexible aircraft in crosswind landings[J]. Journal of Guidance Control and Dynamics, 2013, 36(4): 946-957.
[6] Xiong H, Yi J, Fan G, et al.Anti-crosswind autolanding of UAVs based on active disturbance rejection control [C]// AIAA Guidance Navigation and Control Conference. Toronto, Ontario Canada: AIAA, 2010: 7734.
[7] 宋辉,陈欣,李春涛. 大展弦比无人机抗侧风着陆控制研究[J]. 飞行力学, 2011, 29(6): 26-30. SONG Hui, CHEN Xin, LI Chuntao. Research on automatic landing control for high span-chord ratio UAV in crosswind[J].Flight Dynamics, 2011, 29(6): 26-30. (in Chinese)
[8] 嵇鼎毅. 飞翼布局无人机抗侧风自动着陆控制技术研究 [D]. 南京: 南京航空航天大学, 2007. JI Dingyi. Research onAutomatic Landing Control Technology of Flying Wing Unmanned Aerial Vehicle in Crosswind [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007. (in Chinese)
[9] Ducard G. Fault-Tolerant Flight Control and Guidance Systems, Practical Methods for Small Unmanned Aerial Vehicles[M]. London: Springer-Verlag, 2009.
[10] Klein V, Morelli E. Aircraft System Identification Theory and practice[M]. Reston: AIAA, 2006.
[11] 王启,雷宝权,黎杰. 一种新的迎角估计方法[J]. 现代电子技术, 2012, 35(11): 46-48. WANG Qi, LEI Baoquan, LI Jie. Newmethod of estimating angle-of-attack[J]. Modern Electronics Technique, 2012, 35(11): 46-48. (in Chinese)
[12] 俞立. 鲁棒控制:线性矩阵不等式处理方法 [M]. 北京: 清华大学出版社, 2002: 41-44, 96-107. YU Li. Robust Control: Linear Matrix Inequality Method [M]. Beijing: Tsinghua University Press, 2002. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn