基于超边图匹配的视网膜眼底图像配准算法

邓可欣

清华大学学报(自然科学版) ›› 2014, Vol. 54 ›› Issue (5) : 568-574.

PDF(2453 KB)
PDF(2453 KB)
清华大学学报(自然科学版) ›› 2014, Vol. 54 ›› Issue (5) : 568-574.
论文

基于超边图匹配的视网膜眼底图像配准算法

作者信息 +

Retinal image registration based on hyper-edge graph matching

Author information +
文章历史 +

摘要

视网膜眼底图像配准是临床眼科疾病诊断和治疗中的一个关键环节。针对眼底图像配准过程中大范围视场变化和过分割结构噪声等问题,该文提出了一种改进的基于图的视网膜图像血管匹配方法。将血管交叉点表示成图的顶点,把特征点间沿血管路径的相邻关系表示成边,进而在视网膜血管结构图中构造路径超边来刻画更高阶多元特征关系。在此基础上,实现了一种全自动的视网膜眼底图像配准算法。包括: 第一步,通过多尺度Gabor滤波算法来检测和提取视网膜血管网络; 第二步,利用一种高效的谱松弛匹配算法来求解两个路径超边图的顶点匹配对应关系。最后,通过特征匹配召回率统计和配准的血管中线距离误差两方面的实验,证明该文提出算法是有效和准确的。

Abstract

Retinal fundus image registration is a key step in clinical eye disease diagnosis and treatment. Targeting the difficulties in dealing with pair of images with large field of view differences or with great structural noises caused by over-segmentation, this paper presents an improved graph-based algorithm to match retinal vessel networks by utilizing higher-order relations constructed from the vessel structural graphs whose nodes represent vascular bifurcations with the edges describing relations between feature points. The method performs in a fully automatic fashion, with a multi-scale Gabor filter first employed for detection and extraction of retinal vessels and with the correspondences then recovered between two pathwise hyper-edge graphs using an efficient pairwise spectral matching scheme. Experimental evaluation shows that the developed method is effective and accurate in terms of the feature recall rate and the vascular CEM distance.

关键词

图匹配 / 超边 / 谱松弛匹配 / 血管检测 / 视网膜图像配准

Key words

graph matching / hyper-edge / spectral matching / vessel detection / retinal image registration

引用本文

导出引用
邓可欣. 基于超边图匹配的视网膜眼底图像配准算法[J]. 清华大学学报(自然科学版). 2014, 54(5): 568-574
Kexin DENG. Retinal image registration based on hyper-edge graph matching[J]. Journal of Tsinghua University(Science and Technology). 2014, 54(5): 568-574
中图分类号:     

参考文献

[1] DENG Kexin, TIAN Jie, ZHENG Jian, et al.Retinal fundus image registration via vascular structure graph matching[J]. International Journal of Biomedical Imaging, 2010, doi:
[2] Legg P, Rosin P, Marshall D, et al.Improving accuracy and efficiency of mutual information for multi-modal retinal image registration using adaptive probability density estimation[J]. Computerized Medical Imaging and Graphics, 2013, 37(7-8): 597-606.
[3] TSAI Chialing, LI Chunyi, YANG Gehua, et al.The edge-driven dual-bootstrap iterative closest point algorithm for registration of multimodal fluorescein angiogram sequence[J]. IEEE Transactions on Medical Imaging, 2010, 29(3): 636-649.
[4] Stewart C, TSAI Chialing, Roysam B. The dual-bootstrap iterative closest point algorithm with application to retinal image registration[J]. IEEE Transactions on Medical Imaging, 2003, 22(11): 1379-1394.
[5] ZHENG Yuanjie, Daniel E, Allan A, et al.Landmark matching based retinal image alignment by enforcing sparsity in correspondence matrix[J]. Medical Image Analysis, 2013, doi:
[6] Perez R A, Cabido R, Trucco E, et al.RERBEE: Robust efficient registration via bifurcations and elongated elements applied to retinal fluorescein angiogram sequences[J]. IEEE Transactions on Medical Imaging, 2012, 31(1): 140-150.
[7] Dashtbozorg B, Mendonca A M, Campilho A. An automatic graph-based approach for artery/vein classification in retinal images[J]. IEEE Transactions on Image Processing, 2014, 23(3): 1073-1083.
[8] XU Xiayu, Meindert N, QI Song, et al.Vessel boundary delineation on fundus images using graph-based approach[J]. IEEE Transactions on Medical Imaging, 2011, 30(6): 1184-1191.
[9] Serradell E, Przemyslaw G, Jan K, et al.Robust non-rigid registration of 2d and 3d graphs [C]// IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2012: 996-1003.
[10] Soares J, Leandro J, Cesar R, et al.Retinal vessel segmentation using the 2d gabor wavelet and supervised classification[J]. IEEE Transactions on Medical Imaging, 2006, 25(9): 1214-1222.
[11] Gold S, Rangarajan A. A graduated assignment algorithm for graph matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(4): 377-388.
[12] Leordeanu M, Hebert M. A spectral technique for correspondence problems using pairwise constraints [C]// IEEE International Conference on Computer Vision. IEEE, 2005: 1482-1489.
[13] Cour T, Srinivasan P, SHI Jianbo. Balanced graph matching [C]// NIPS: Neural Information Processing Systems Foundation. 2006: 313-320.
[14] Schellewald C, Schnörr C. Probabilistic subgraph matching based on convex relaxation [C]// Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer, 2005: 171-186.
[15] Duchenne O, Bach F, Kweon I, et al.A tensor-based algorithm for high-order graph matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2383-2395.
[16] Zass R, Shashua A. Probabilistic graph and hypergraph matching [C]// IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2008: 1-8.
[17] Kang U, Hebert M, Park S. Fast and scalable approximate spectral graph matching for correspondence problems [C]// Information Sciences 220. Online Fuzzy Machine Learning and Data Mining. 2013: 306-318.
[18] CHUI Haili, Rangarajan A. A new point matching algorithm for non-rigid registration[J]. Computer Vision and Image Understanding, 2003, 89(2): 114-141.

基金

 

PDF(2453 KB)

Accesses

Citation

Detail

段落导航
相关文章

/