Eccentric compressive behavior of high strength concrete filled double-tube short columns
Jiaru QIAN1(),Yang ZHANG1,Weijing ZHANG2
1. Key Laboratory of Civil Engineering Safety and Durability of the Ministry of Education, Department of Civil Engineering,Tsinghua University, Beijing 100084, China 2. College of Architecture and Civil Engineering,Beijing University of Technology, Beijing 100124, China
Static tests were conducted on 16 high strength concrete filled double-tube (CFDT) short column specimens with eccentricity ratios 0.2-0.6. The tests studied the eccentric compressive behavior of the CFDT short columns. All the specimens had identical section dimensions of 180 mm×180 mm and heights of 600 mm. The test results indicate that all the specimens failed in bending of the column and local buckling of the steel plates of the external square tube. The residual compressive force is larger than 75% of the maximum compressive force. Increasing the steel ratio of the square steel tube or the eccentricity ratio of the compressive load increases the eccentric compressive capacity of the CFDT short columns. The eccentric compressive capacity of the specimens calculated by the superposition method agrees well with the test results.
王志浩, 成戎. 复合方钢管混凝土短柱的轴压承载力[J]. 清华大学学报: 自然科学版, 2005, 45(12): 1596-1599. WANG Zhihao, CHENG Rong. Axial bearing capacity of composite-sectioned square concrete-filled steel tube[J]. Journal of Tsinghua University: Science and Technology, 2005, 45(12): 1596-1599. (in Chinese)
[2]
裴万吉. 复式钢管混凝土柱力学性能研究 [D]. 西安: 长安大学, 2005. PEI Wanji. Research on Mechanical Performance of Multi-Barrel Tube-Confined Concrete Columns [D]. Xi'an: Chang'an University, 2005. (In Chinese)
[3]
张志权, 赵胜民, 张玉芬, 等. 外方内圆钢管混凝土轴压承载力计算方法[J]. 建筑科学与工程学报, 2009, 26(2): 63-68. ZHANG Zhiquan, ZHAO Shengmin, ZHANG Yufen, et al.Calculation method of axial bearing capacity of concrete-filled square steel tubular columns reinforced by inner circular steel tube[J]. Journal of Architecture and Civil Engineering, 2009, 26(2): 63-68. (In Chinese)
[4]
钱稼茹, 张扬, 纪晓东, 等. 复合钢管高强混凝土短柱轴心受压性能试验与分析[ J]. 建筑结构学报, 2011, 32(12): 162-169. QIAN Jiaru, ZHANG Yang, JI Xiaodong, et al.Test and analysis of axial compressive behavior of short composite- sectioned high strength concrete filled steel tubular columns[J]. Journal of Building Structures, 2011, 32(12): 68-76. (in Chinese)
[5]
余志武, 丁发兴. 圆钢管混凝土偏压柱的力学性能[J]. 中国公路学报, 2008, 21(1): 40-46. YU Zhiwu, DING Faxing. Mechanical behavior of concrete filled circular steel tubular columns under eccentric compression[J]. China Journal of Highway and Transport, 2008, 21(1): 40-46. (in Chinese)
[6]
Lss S H, Uya B, Kin S H, et al.Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading[J]. Journal of Constructional Steel Research, 2011, 67(1): 1-13.
[7]
张素梅, 郭兰慧, 王玉银, 等. 方钢管高强混凝土偏压构件的试验研究与理论分析[J]. 建筑结构学报, 2004, 25(1): 17-25. ZHANG Sumei, GUO Lanhui, WANG Yuyin, et a1. Experimental research and theoretical analysis of high strength concrete filled square steel tubes subjected to eccentric loading[J]. Journal of Building Structures, 2004, 25(1): 17-25. (in Chinese)
[8]
Lu F W, Li S P, Sun G J. A study on the behavior of eccentrically compressed square concrete-filled steel tube columns[J]. Journal of Constructional Steel Research, 2007, 63(7): 941-948.
[9]
Fujimoto T, Mukai A, Nishiyama I, et al.Behavior of eccentrically loaded concrete-filled steel tubular columns[J]. Journal of Structural Engineering-ASCE, 2004, 130(2): 203-212.
[10]
叶列平. 混凝土结构 [M]. 北京: 清华大学出版社, 2005: 12-15. YE Lieping. Concrete Structures [M]. Beijing: Tsinghua University Press, 2005: 12-15. (in Chinese)
[11]
王连广, 赵同峰, 李宏男. 方钢管-钢骨高强混凝土偏压柱试验研究与理论分析[J]. 建筑结构学报, 2010, 31(7): 64-71. WANG Lianguang, ZHAO Tongfeng, LI Hongnan. Experimental research and theoretical analysis of square steel tube columns filled with steel-reinforced high-strength concrete subjected to eccentric loading[J]. Journal of Building Structures, 2010, 31(7): 64-71. (in Chinese)
[12]
JGJ 3-2011.高层建筑混凝土结构技术规程[S]. 北京: 中华人民共和国住房和城乡建设部, 2011. JGJ3-2011 Technical Specification for Concrete Structures of Tall Building[S]. Beijing: Ministry of Housing and Urban-Rural Development of the Reople's Republic of China, 2011. (in Chinese)
[13]
CECS159: 2004. 矩形钢管混凝土结构技术规程[S]. 北京: 中国工程建设标准化协会, 2004. CECS 159: 2004 Technical Specification for Structures with Concrete-Filled Rectangular Steel Tube Members[S]. Beijing: China Association for Engineering Construction Standardization, 2004. (in Chinese)