1. Key Laboratory of Advanced Reactor Engineering and Safety of the Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University,Beijing 100084, China 2. China Institute for Radiation Protection, Taiyuan 030006, China
Source inversion is an important way to quantitatively analyze the radioactive release source in nuclear accidents such as the Fukushima nuclear accident. This study presents an inversion method for radioactive release source estimates in nuclear accidents that couples a four-dimensional variational (4DVAR) data assimilation technique with a mesoscale atmospheric dispersion model. The method is formulated as an optimization problem between the real observation data and the background field. Environmental radiation monitoring data around the nuclear power station is used to calculate the gradient for cost function by integrating the adjoint to calculate the optimal source estimate. The advantage of this method is that the radionuclide transport is included in every time step in the data assimilation and the result is the global optimum over the whole assimilation period. The method was verified using the data of a wind tunnel experiment. The results demonstrate that source estimate errors are approximately 20%.
Keller W, Modarres M. A historical overview of probabilistic risk assessment development and its use in the nuclear power industry: A tribute to the late Professor Norman Carl Rasmussen[J]. Reliability Engineering & System Safety, 2005, 89(3): 271-285.
[2]
白晓平,李红,方栋,等. 资料同化方法在空气污染数值预报中的应用研究[J]. 环境科学, 2008, 29(2): 283-289. BAI Xiaoping, LI Hong, FANG Dong, et al.Application research of data assimilation in air pollution numerical prediction[J]. Environment Science, 2008, 29(2): 283-289. (in Chinese)
[3]
Kalnay E. 大气模式,资料同化和可预报性 [M].蒲朝霞, 杨福全, 邓兆胜, 等译. 北京: 气象出版社,2005. Kalnay E. Atmospheric Modeling, Data Assimilation and Predictability [M]. Translated by PU Zhaoxia, YANG Fuquan, DENG Beisheng, et al. Beijing: China Meteorological Press, 2005.(in Chinese)
[4]
官元红, 周广庆, 陆维松,等.资料同化方法的理论发展及应用综述[J]. 气象与减灾研究, 2008, 30(4): 1-8. GUAN Yuanhong, ZHOU Guangqing, LU Weisong, et al.Theory development and application of data assimilation methods[J]. Meteorology and Disaster Reduction Research, 2008, 30(4): 1-8.(in Chinese)
[5]
乔方利. 现代海洋/大气资料同化方法的统一性及其应用进展[J]. 海洋科学进展, 2002, 20(4): 79-93. QIAO Fangli. The unification and application reviews of modern oceanic/atmospheric data assimilation algorithms[J]. Advances in Marine Science, 2002, 20(4): 79-93. (in Chinese)
[6]
Wu L, Mallet V, Bocquet M, et al. A comparison study of data assimilation algorithms for ozone forecasts [Z/OL]. (2013-09-12), http://onlinelibrary.wiley.com/doi/10.1029/2008JD009991/full.
[7]
牟容,刘黎平,许小永,等.四维变分方法反演低层风场能力研究[J]. 气象, 2007, 33(1): 11-18. MU Rong, LIU Liping, XU Xiaoyong, et al.The capability research on retrieving low-level wind field with 4d-var assimilation technique[J]. Meteorological Monthly, 2007, 33(1): 11-18. (in Chinese)
[8]
朱江, 汪萍. 集合卡尔曼平滑和集合卡尔曼滤波在污染源反演中的应用[J]. 大气科学, 2006, 30(005): 871-882. ZHU Jiang, WANG Ping. Ensemble Kalman smoother and ensemble Kalman filter approaches to the joint air quality state and emission estimation problem[J]. Chinese Journal of Atmospheric Sciences, 2006, 30(005): 871-882. (in Chinese)
[9]
王玉斗,LI Gaoming,李茂辉.集合卡尔曼滤波方法在非线性油藏问题中的应用[J]. 中国石油大学学报: 自然科学版, 2010, 34(005): 188-192. WANG Yudou, LI Gaoming, LI Maohui. Application of ensemble Kalman filter in nonlinear reservoir problem[J]. Journal of China University of Petroleum: Edition of Natural Science, 2010, 34(005): 188-192. (in Chinese)
[10]
Davoine X, Bocquet M. Inverse modelling-based reconstruction of the Chernobyl source term available for long-range transport[J]. Atmospheric Chemistry and Physics, 2007, 7(6): 1549-1564.
[11]
Winiarek V, Bocquet M, Saunier O, et al. Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: Application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant [Z/OL].(2013-09-27), http://onlinelibrary.wiley.com/doi/10.1029/2011JD016932/full.
[12]
Raskob W, Raskob E J. The RODOS system: Decision support for nuclear off-site emergency management in Europe, RODOS Report GEN TN99 02 [Z/OL]. (2013-11-16), http://www.irpa.net/irpa10/cdrom/00523.pdf.
[13]
姚仁太,郝宏伟,胡二邦,等. RODOS 系统中两种大气弥散模型链的比较[J]. 辐射防护, 2003, 23(3): 146-155. YAO Rentai, HAO Hongwei, HU Erbang, et al.Comparison of two kinds of atmospheric dispersion model chains in RODOS[J]. Radiation Protection, 2003, 23(3): 146-155. (in Chinese)
[14]
邹敬,曲静原,曹建主. RODOS 系统中 RIMPUFF 模型的验证与比对[J]. 核动力工程, 2006, 26(5): 475-479. ZOU Jing, QU Jingyuan, CAO Jianzhu. Validation of RIMPUFF model in RODOS[J]. Nuclear Power Engineering, 2006, 26(5): 475-479. (in Chinese)
[15]
Lewis J, Lakshmivarahan S, Dhall S. Dynamic Data Assimilation: A Least Squares Approach [M]. Cambridge, UK: Cambridge University Press, 2006.
[16]
Elbern H, Strunk A, Nieradzik L. Inverse modelling and combined state-source estimation for chemical weather [C]// Lahoz W, Khattatov B, Menard R, Ed. Data Assimilation. Berlin, Germany: Springer, 2010: 491-513.
[17]
Elbern H, Strunk A, Schmidt H, et al.Emission rate and chemical state estimation by 4-dimensional variational inversion[J]. Atmospheric Chemistry and Physics, 2007, 7(14): 3749-3769.
[18]
杜川利. 四维变分资料同化[J]. 陕西气象, 2003(3): 1-6. DU Chuanli. 4DVAR data assimilation[J]. Journal of Shaanxi Meteorology, 2003(3): 1-6. (in Chinese)
[19]
刘国平. 中国新一代全球数值天气预报模式切线性伴随模式技术 [D]. 长沙: 国防科学技术大学,2008. LIU Guoping. Tangent Adjoint Mode Technology of Chinese GRAPES Global Mode [D]. Changsha: National University of Defense Technology, 2008. (in Chinese)
[20]
王栋梁,沈桐立. 中尺度数值模式 MM5 的四维变分资料同化系统[J]. 南京气象学院学报, 2002, 25(5): 603-610. WANG Dongliang, SHEN Tongli. The four-dimensional variational data assimilation system of mesoscale numerical model MM5[J]. Journal of Nanjing Institute of Meteorology, 2002, 25(5): 603-610. (in Chinese)
[21]
Zheng D, Leung J, Lee B. An ensemble Kalman filter for atmospheric data assimilation: Application to wind tunnel data[J]. Atmospheric Environment, 2010, 44(13): 1699-1705.
[22]
Krysta M, Bocquet M, Sportisse B, et al.Data assimilation for short-range dispersion of radionuclides: An application to wind tunnel data[J]. Atmospheric Environment, 2006, 40(38): 7267-7279.
[23]
陈晓秋,潘自强,张永兴,等. 核事故早期应急响应的预报模式及其设计方案[J]. 辐射防护, 2005, 25(1): 1-10. CHEN Xiaoqiu, PAN Ziqiang, ZHANG Yongxing, et al.Forecast model and its design for early emergency response to nuclear accidents[J]. Radiation Protection, 2005, 25(1): 1-10. (in Chinese)
[24]
邹敬,曲静原,曹建主. 大气扩散模型验证与比对的工具和方法[J]. 辐射防护通讯, 2004, 24(143): 15-20. ZOU Jing, QU Jingyuan, CAO Jianzhu. Methodologies for comparison of atmospheric dispersion models[J]. Radiation Protection Bulletin, 2004, 24(143): 15-20. (in Chinese)