Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2015, Vol. 55 Issue (1): 98-104    
  本期目录 | 过刊浏览 | 高级检索 |
基于四维变分资料同化的核事故源项反演
刘蕴1,方晟1,李红1(),曲静原1,姚仁太2,范丹2
2. 中国辐射防护研究院, 太原 030006
Source inversion in nuclear accidents based on 4D variational data assimilation
Yun LIU1,Sheng FANG1,Hong LI1(),Jingyuan QU1,Rentai YAO2,Dan FAN2
1. Key Laboratory of Advanced Reactor Engineering and Safety of the Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University,Beijing 100084, China
2. China Institute for Radiation Protection, Taiyuan 030006, China
全文: PDF(1423 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

福岛(Fukushima)核事故后,源项反演成为一种重要的核事故放射性释放源项定量计算分析方法。该文引入四维变分(4DVAR)资料同化法,结合中尺度大气扩散模型,提出一种针对核电厂事故的放射性释放源项反演方法。该方法利用核电厂周围监测数据,使用伴随方法迭代计算四维变分代价函数梯度,得到对释放源项的最佳估计。该方法考虑了完整时间序列上的放射性传输过程,对释放源项的估计结果为全局最优。风洞实验验证结果表明: 源项估计的相对误差为20%左右。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 源项反演四维变分(4DVAR)资料同化大气扩散风洞实验    
Abstract

Source inversion is an important way to quantitatively analyze the radioactive release source in nuclear accidents such as the Fukushima nuclear accident. This study presents an inversion method for radioactive release source estimates in nuclear accidents that couples a four-dimensional variational (4DVAR) data assimilation technique with a mesoscale atmospheric dispersion model. The method is formulated as an optimization problem between the real observation data and the background field. Environmental radiation monitoring data around the nuclear power station is used to calculate the gradient for cost function by integrating the adjoint to calculate the optimal source estimate. The advantage of this method is that the radionuclide transport is included in every time step in the data assimilation and the result is the global optimum over the whole assimilation period. The method was verified using the data of a wind tunnel experiment. The results demonstrate that source estimate errors are approximately 20%.

Key wordssource inversion    four-dimensional variational (4DVAR) data assimilation    atmospheric dispersion    wind tunnel experiment
收稿日期: 2014-05-26      出版日期: 2015-01-20
基金资助:国家自然科学基金资助项目(81101030)
引用本文:   
刘蕴,方晟,李红,曲静原,姚仁太,范丹. 基于四维变分资料同化的核事故源项反演[J]. 清华大学学报(自然科学版), 2015, 55(1): 98-104.
Yun LIU,Sheng FANG,Hong LI,Jingyuan QU,Rentai YAO,Dan FAN. Source inversion in nuclear accidents based on 4D variational data assimilation. Journal of Tsinghua University(Science and Technology), 2015, 55(1): 98-104.
链接本文:  
http://jst.tsinghuajournals.com/CN/  或          http://jst.tsinghuajournals.com/CN/Y2015/V55/I1/98
  地面释放归一化体积活度浓度分布
  烟囱释放归一化体积活度浓度分布
  地面释放情况下,风洞实验获得的扩散参数与P-G扩散参数的对比
  烟囱释放情况下,风洞实验获得的扩散参数与P-G扩散参数的对比
  地面释放归一化代价函数收敛曲线
  烟囱释放归一化代价函数收敛曲线
释放
方式
监测数据 Q/(Bq·烟团-1) 误差/%
地面
释放
使用全部测点 5 017.8 49.8
使用代表性测点 7 449.6 25.5
烟囱
释放
使用全部测点 5 039.4 49.6
使用代表性测点 8 222.5 17.8
  基于风洞实验数据的释放率估计
[1] Keller W, Modarres M. A historical overview of probabilistic risk assessment development and its use in the nuclear power industry: A tribute to the late Professor Norman Carl Rasmussen[J]. Reliability Engineering & System Safety, 2005, 89(3): 271-285.
[2] 白晓平,李红,方栋,等. 资料同化方法在空气污染数值预报中的应用研究[J]. 环境科学, 2008, 29(2): 283-289. BAI Xiaoping, LI Hong, FANG Dong, et al.Application research of data assimilation in air pollution numerical prediction[J]. Environment Science, 2008, 29(2): 283-289. (in Chinese)
[3] Kalnay E. 大气模式,资料同化和可预报性 [M].蒲朝霞, 杨福全, 邓兆胜, 等译. 北京: 气象出版社,2005. Kalnay E. Atmospheric Modeling, Data Assimilation and Predictability [M]. Translated by PU Zhaoxia, YANG Fuquan, DENG Beisheng, et al. Beijing: China Meteorological Press, 2005.(in Chinese)
[4] 官元红, 周广庆, 陆维松,等.资料同化方法的理论发展及应用综述[J]. 气象与减灾研究, 2008, 30(4): 1-8. GUAN Yuanhong, ZHOU Guangqing, LU Weisong, et al.Theory development and application of data assimilation methods[J]. Meteorology and Disaster Reduction Research, 2008, 30(4): 1-8.(in Chinese)
[5] 乔方利. 现代海洋/大气资料同化方法的统一性及其应用进展[J]. 海洋科学进展, 2002, 20(4): 79-93. QIAO Fangli. The unification and application reviews of modern oceanic/atmospheric data assimilation algorithms[J]. Advances in Marine Science, 2002, 20(4): 79-93. (in Chinese)
[6] Wu L, Mallet V, Bocquet M, et al. A comparison study of data assimilation algorithms for ozone forecasts [Z/OL]. (2013-09-12), http://onlinelibrary.wiley.com/doi/10.1029/2008JD009991/full.
[7] 牟容,刘黎平,许小永,等.四维变分方法反演低层风场能力研究[J]. 气象, 2007, 33(1): 11-18. MU Rong, LIU Liping, XU Xiaoyong, et al.The capability research on retrieving low-level wind field with 4d-var assimilation technique[J]. Meteorological Monthly, 2007, 33(1): 11-18. (in Chinese)
[8] 朱江, 汪萍. 集合卡尔曼平滑和集合卡尔曼滤波在污染源反演中的应用[J]. 大气科学, 2006, 30(005): 871-882. ZHU Jiang, WANG Ping. Ensemble Kalman smoother and ensemble Kalman filter approaches to the joint air quality state and emission estimation problem[J]. Chinese Journal of Atmospheric Sciences, 2006, 30(005): 871-882. (in Chinese)
[9] 王玉斗,LI Gaoming,李茂辉.集合卡尔曼滤波方法在非线性油藏问题中的应用[J]. 中国石油大学学报: 自然科学版, 2010, 34(005): 188-192. WANG Yudou, LI Gaoming, LI Maohui. Application of ensemble Kalman filter in nonlinear reservoir problem[J]. Journal of China University of Petroleum: Edition of Natural Science, 2010, 34(005): 188-192. (in Chinese)
[10] Davoine X, Bocquet M. Inverse modelling-based reconstruction of the Chernobyl source term available for long-range transport[J]. Atmospheric Chemistry and Physics, 2007, 7(6): 1549-1564.
[11] Winiarek V, Bocquet M, Saunier O, et al. Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: Application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant [Z/OL].(2013-09-27), http://onlinelibrary.wiley.com/doi/10.1029/2011JD016932/full.
[12] Raskob W, Raskob E J. The RODOS system: Decision support for nuclear off-site emergency management in Europe, RODOS Report GEN TN99 02 [Z/OL]. (2013-11-16), http://www.irpa.net/irpa10/cdrom/00523.pdf.
[13] 姚仁太,郝宏伟,胡二邦,等. RODOS 系统中两种大气弥散模型链的比较[J]. 辐射防护, 2003, 23(3): 146-155. YAO Rentai, HAO Hongwei, HU Erbang, et al.Comparison of two kinds of atmospheric dispersion model chains in RODOS[J]. Radiation Protection, 2003, 23(3): 146-155. (in Chinese)
[14] 邹敬,曲静原,曹建主. RODOS 系统中 RIMPUFF 模型的验证与比对[J]. 核动力工程, 2006, 26(5): 475-479. ZOU Jing, QU Jingyuan, CAO Jianzhu. Validation of RIMPUFF model in RODOS[J]. Nuclear Power Engineering, 2006, 26(5): 475-479. (in Chinese)
[15] Lewis J, Lakshmivarahan S, Dhall S. Dynamic Data Assimilation: A Least Squares Approach [M]. Cambridge, UK: Cambridge University Press, 2006.
[16] Elbern H, Strunk A, Nieradzik L. Inverse modelling and combined state-source estimation for chemical weather [C]// Lahoz W, Khattatov B, Menard R, Ed. Data Assimilation. Berlin, Germany: Springer, 2010: 491-513.
[17] Elbern H, Strunk A, Schmidt H, et al.Emission rate and chemical state estimation by 4-dimensional variational inversion[J]. Atmospheric Chemistry and Physics, 2007, 7(14): 3749-3769.
[18] 杜川利. 四维变分资料同化[J]. 陕西气象, 2003(3): 1-6. DU Chuanli. 4DVAR data assimilation[J]. Journal of Shaanxi Meteorology, 2003(3): 1-6. (in Chinese)
[19] 刘国平. 中国新一代全球数值天气预报模式切线性伴随模式技术 [D]. 长沙: 国防科学技术大学,2008. LIU Guoping. Tangent Adjoint Mode Technology of Chinese GRAPES Global Mode [D]. Changsha: National University of Defense Technology, 2008. (in Chinese)
[20] 王栋梁,沈桐立. 中尺度数值模式 MM5 的四维变分资料同化系统[J]. 南京气象学院学报, 2002, 25(5): 603-610. WANG Dongliang, SHEN Tongli. The four-dimensional variational data assimilation system of mesoscale numerical model MM5[J]. Journal of Nanjing Institute of Meteorology, 2002, 25(5): 603-610. (in Chinese)
[21] Zheng D, Leung J, Lee B. An ensemble Kalman filter for atmospheric data assimilation: Application to wind tunnel data[J]. Atmospheric Environment, 2010, 44(13): 1699-1705.
[22] Krysta M, Bocquet M, Sportisse B, et al.Data assimilation for short-range dispersion of radionuclides: An application to wind tunnel data[J]. Atmospheric Environment, 2006, 40(38): 7267-7279.
[23] 陈晓秋,潘自强,张永兴,等. 核事故早期应急响应的预报模式及其设计方案[J]. 辐射防护, 2005, 25(1): 1-10. CHEN Xiaoqiu, PAN Ziqiang, ZHANG Yongxing, et al.Forecast model and its design for early emergency response to nuclear accidents[J]. Radiation Protection, 2005, 25(1): 1-10. (in Chinese)
[24] 邹敬,曲静原,曹建主. 大气扩散模型验证与比对的工具和方法[J]. 辐射防护通讯, 2004, 24(143): 15-20. ZOU Jing, QU Jingyuan, CAO Jianzhu. Methodologies for comparison of atmospheric dispersion models[J]. Radiation Protection Bulletin, 2004, 24(143): 15-20. (in Chinese)
[1] 黎岢, 梁漫春, 苏国锋. 基于Gauss烟团模型的大气扩散数据同化方法[J]. 清华大学学报(自然科学版), 2018, 58(11): 992-999.
[2] 赵全来, 苏国锋, 陈建国, 袁宏永, 张小乐, 陈鹏, 倪顺江. 重大核事故情景库建立及应用[J]. 清华大学学报(自然科学版), 2015, 55(7): 808-814.
[3] 刘毅,刘龙,李王锋,董业斌,张秀青. 石化园区规划大气环境风险模拟方法与案例[J]. 清华大学学报(自然科学版), 2015, 55(1): 80-86.
[4] 胡啸峰,黄弘,申世飞. 基于城市冠层模型的放射性物质大气扩散模拟[J]. 清华大学学报(自然科学版), 2014, 54(6): 711-718.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn