Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2015, Vol. 55 Issue (10): 1135-1142    DOI: 10.16511/j.cnki.qhdxxb.2015.22.015
  航天航空 本期目录 | 过刊浏览 | 高级检索 |
四组分汽油替代燃料的化学动力学模型
郑东, 钟北京
清华大学 航天航空学院, 北京 100084
Chemical kinetics model for four-component gasoline surrogate fuels
ZHENG Dong, ZHONG Beijing
School of Aerospace, Tsinghua University, Beijing 100084, China
全文: PDF(1364 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 该文通过反应路径分析和灵敏度分析, 发展了甲苯氧化子机理, 进而构建四组分(异辛烷、正庚烷、甲苯、乙醇)汽油替代燃料的化学动力学模型。该模型包含75个组分和305个基元反应。验证结果表明: 该模型不仅能够准确计算单组分燃料的着火延迟时间、火焰传播速度和火焰结构, 而且在一定的压强和温度范围内, 能够较准确地计算多组分汽油替代燃料的着火延迟时间, 反映不同辛烷值汽油的自燃特性。该文提出的四组分汽油替代燃料动力学模型包含较少的组分数与基元反应数, 更有利于在汽油燃烧的多维计算流体动力学(CFD)模拟中得到应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑东
钟北京
关键词 替代燃料着火延迟时间火焰传播速度动力学模型甲苯    
Abstract:The sub-mechanism of toluene oxidation was identified using path and sensitivity analyses. A chemical kinetics mechanism for a four-component gasoline surrogate fuel made of iso-octane/n-heptane/ethanol/toluene includes 75 species and 305 elementary reactions. The validated results show that the mechanism gives good agreement with experimental data for the pure fuel ignition delay time, laminar flame speed, and chemical structure predictions. The model also predicts the ignition delay time of multi-component gasoline surrogate fuels in the specified pressure and temperature range and reproduces the auto-ignition characteristics of different research octane number (RON) gasoline fuels. Since this chemical kinetics model has few species and few reactions, the mechanism can be used in multidimensional, computational fluid dynamics (CFD) simulations of the gasoline combustion.
Key wordssurrogate fuel    ignition delay time    laminar flame speed    kinetic model    toluene
收稿日期: 2013-12-02      出版日期: 2015-10-15
ZTFLH:  TK418.9  
基金资助:国家自然科学基金项目(51036004)
通讯作者: 钟北京,教授,E-mail:zhongbj@tsinghua.edu.cn     E-mail: zhongbj@tsinghua.edu.cn
作者简介: 郑东(1987-),男(汉),陕西,博士研究生。
引用本文:   
郑东, 钟北京. 四组分汽油替代燃料的化学动力学模型[J]. 清华大学学报(自然科学版), 2015, 55(10): 1135-1142.
ZHENG Dong, ZHONG Beijing. Chemical kinetics model for four-component gasoline surrogate fuels. Journal of Tsinghua University(Science and Technology), 2015, 55(10): 1135-1142.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2015.22.015  或          http://jst.tsinghuajournals.com/CN/Y2015/V55/I10/1135
  表1 5种汽油替代燃料的组成成分和比例
  图1 甲苯氧化主要路径
  图2 未修正模型和修正模型计算的甲苯火焰传播速度、着火延迟时间与实验结果比较
  图3 甲苯火焰传播速度灵敏度分析
  图4 甲苯温度灵敏度分析
  表2 修正的反应和动力学参数
  图5 PRF着火延迟时间计算值与实验值比较
  图6 乙醇着火延迟时间计算值与实验值比较
  图7 甲苯着火延迟时间计算值与实验值比较
  图8 异辛烷、正庚烷、乙醇火焰传播速度计算值与实验值比较
  图9 甲苯火焰传播速度计算值与实验值比较
  图10 甲苯重要组分计算值与实验值[29]比较
  图11 SurrogateA 着火延迟时间计算值与实验值比较
  图12 SurrogateB着火延迟时间计算值与实验值比较
  图13 SurrogateC着火延迟时间计算值与实验值比较
  图14 SurrogateD 着火延迟时间计算值与实验值比较
[1] Pera C, Knop V. Methodology to define gasoline surrogates dedicated to auto-ignition in engines [J]. Fuel, 2012, 96: 59-69.
[2] Ranzi E, Faravelli T, Gaffuri P, et al. A wide-range modeling study of iso-octane oxidation [J]. Combustion and Flame, 1997, 108(1/2): 24-42.
[3] Curran H J, Gaffuri P, Pitz W J, et al. A comprehensive modeling study of iso-octane oxidation [J]. Combustion and Flame, 2002, 129(3): 253-280.
[4] Jia M, Xie M. A chemical kinetics model of iso-octane oxidation for HCCI engines [J]. Fuel, 2006, 85(17/18): 2593-2604.
[5] Curran H J, Pitz W J, Westbrook C K, et al. Oxidation of automotive primary reference fuels at elevated pressures [J]. Symposium (International) on Combustion, 1998, 27(1): 379-387.
[6] Tanaka S, Ayala F, Keck J C. A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine [J]. Combustion and Flame, 2003, 133(4): 467-481.
[7] Ra Y, Reitz R D. A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels [J]. Combustion and Flame, 2008, 155(4): 713-738.
[8] Tsurushima T. A new skeletal PRF kinetic model for HCCI combustion [J]. Proceedings of the Combustion Institute, 2009, 32(2): 2835-2841.
[9] 张庆峰, 郑朝蕾, 何祖威, 等. 适用于HCCI发动机的基础燃料化学动力学模型Ⅱ:构造骨架机理 [J]. 内燃机学报, 2011, 29(2): 133-138.ZHANG Qingfeng, ZHENG Zhaolei, HE Zuwei, et al. A chemical kinetic model of PRF oxidation for HCCI Engine II: Structure of a skeletal model [J]. Transactions of CSICE, 2011, 29(2): 133-138. (in Chinese)
[10] Pitz W J, Cernansky N P, Dryer F L, et al. Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels [R]. SAE Technical Paper 2007-01-0201. 2007.
[11] Andrae J C G, Brinck T, Kalghatgi G T. HCCI experiments with toluene reference fuels modeled by a semidetailed chemical kinetic model [J]. Combustion and Flame, 2008, 155(4): 696-712.
[12] Sakai Y, Miyoshi A, Koshi M, et al. A kinetic modeling study on the oxidation of primary reference fuel-toluene mixtures including cross reactions between aromatics and aliphatics [J]. Proceedings of the Combustion Institute, 2009, 32(1): 411-418.
[13] Lee K, Kim Y, Min K. Development of a reduced chemical kinetic mechanism for a gasoline surrogate for gasoline HCCI combustion [J]. Combustion Theory and Modelling, 2010, 15(1): 107-124.
[14] 张庆峰, 郑朝蕾, 何祖威, 等. 适用于HCCI燃烧研究的甲苯参比燃料化学动力学简化模型[J]. 物理化学学报, 2011, 27(3): 530-538. (in English) ZHANG Qingfeng, ZHENG Zhaolei, HE Zuwei, et al. Reduced chemical kinetic model of toluene reference fuels for HCCI combustion [J]. Acta Phys-Chim Sin, 2011, 27(3): 530-538.
[15] Andrae J C G. Development of a detailed kinetic model for gasoline surrogate fuels [J]. Fuel, 2008, 87(10/11): 2013-2022.
[16] Andrae J C G, Head R A. HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model [J]. Combustion and Flame, 2009, 156(4): 842-851.
[17] Gauthier B M, Davidson D F, Hanson R K. Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures [J]. Combustion and Flame, 2004, 139(4): 300-311.
[18] Fikri M, Herzler J, Starke R, et al. Autoignition of gasoline surrogates mixtures at intermediate temperatures and high pressures [J]. Combustion and Flame, 2008, 152(1/2): 276-281.
[19] Cancino L R, Fikri M, Oliveira A A M, et al. Autoignition of gasoline surrogate mixtures at intermediate temperatures and high pressures: Experimental and numerical approaches [J]. Proceedings of the Combustion Institute, 2009, 32(1): 501-508.
[20] 郑东, 钟北京. 异辛烷/正庚烷/乙醇三组分燃料着火的化学动力学模型 [J]. 物理化学学报, 2012, 28(9): 2029-2036.ZHENG Dong, ZHONG Beijing. Chemical kinetic model for ignition of three-component comprising iso-octane/n-heptane/ethanol fuel [J]. Acta Phys-Chim Sin, 2012, 28(9): 2029-2036. (in Chinese)
[21] Marinov N M. A detailed chemical kinetic model for high temperature ethanol oxidation [J]. International Journal of Chemical Kinetics, 1999, 31(3): 183-220.
[22] Zhong B J, Zheng D. Chemical kinetic mechanism of a three-component fuel composed of iso-octane/n-heptane/ethanol [J]. Combustion Science and Technology, 2012, 185(4): 627-644.
[23] Kee R J, Rupley F M, Miller J A, et al. CHEMKIN Release 4.1 [M]. San Diego, CA: Reaction Design, 2006.
[24] Fieweger K, Blumenthal R, Adomeit G. Self-ignition of S.I. engine model fuels: A shock tube investigation at high pressure [J]. Combustion and Flame, 1997, 109(4): 599-619.
[25] Dunphy M P, Simmie J M. High-temperature oxidation of ethanol. Part 1: Ignition delays in shock waves [J]. Journal of the Chemical Society, Faraday Transactions, 1991, 87(11): 1691-1696.
[26] Davidson D F, Gauthier B M, Hanson R K. Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures [J]. Proceedings of the Combustion Institute, 2005, 30(1): 1175-1182.
[27] Van Lipzig J P J, Nilsson E J K, De Goey L P H, et al. Laminar burning velocities of n-heptane, iso-octane, ethanol and their binary and tertiary mixtures [J]. Fuel, 2011, 90(8): 2773-2781.
[28] Davis S G, Wang H, Breinsky K, et al. Laminar flame speeds and oxidation kinetics of benene-air and toluene-air flames [J]. Symposium (International) on Combustion, 1996, 26(1): 1025-1033.
[29] Li Y Y, Cai J H, Zhang L D, et al. Investigation on chemical structures of premixed toluene flames at low pressure [J]. Proceedings of the Combustion Institute, 2011, 33(1): 593-600.
[1] 王煜天, 张瑞杰, 吴军, 汪劲松. 移动式混联喷涂机器人的动力学性能波动评价[J]. 清华大学学报(自然科学版), 2022, 62(5): 971-977.
[2] 赵雅聪, 王启明. FAST索牵引并联机器人的动力学建模与仿真[J]. 清华大学学报(自然科学版), 2022, 62(11): 1772-1779.
[3] 侯森浩, 唐晓强, 孙海宁, 崔志伟, 王殿君. 面向航天器分离的高速索力传递特性[J]. 清华大学学报(自然科学版), 2021, 61(3): 177-182.
[4] 徐志, 马静, 王浩, 赵建世, 胡雅杰, 杨贵羽. 长江口影响水资源承载力关键指标与临界条件[J]. 清华大学学报(自然科学版), 2019, 59(5): 364-372.
[5] 王潇剑, 吴军, 岳义, 许允斗. 2UPU/SP 3自由度并联机构的动力学性能评价[J]. 清华大学学报(自然科学版), 2019, 59(10): 838-846.
[6] 杨飞, 傅旭东. 垂向基于谱方法的三维弯道水流模型[J]. 清华大学学报(自然科学版), 2018, 58(10): 914-920.
[7] 张彬彬, 王立平, 吴军. 3自由度并联机构的动力学各向同性评价方法[J]. 清华大学学报(自然科学版), 2017, 57(8): 803-809.
[8] 于广, 王立平, 吴军, 王冬. 3自由度并联主轴头的动力学建模及动态特性[J]. 清华大学学报(自然科学版), 2017, 57(12): 1317-1323.
[9] 赵富龙, 薄涵亮, 刘潜峰. 压力变化条件下静止液滴相变模型[J]. 清华大学学报(自然科学版), 2016, 56(7): 759-764,771.
[10] 刘荣华, 魏加华, 翁燕章, 王光谦, 唐爽. HydroMP:基于云计算的水动力学建模及计算服务平台[J]. 清华大学学报(自然科学版), 2014, 54(5): 575-583.
[11] 冯蘅, 李清海, 甘超, 蒙爱红, 张衍国. 循环流化床返料装置1维动力学模型[J]. 清华大学学报(自然科学版), 2014, 54(2): 229-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn