网络上的话题纷杂多样而人们的注意力有限,势必导致多话题之间竞争稀缺的用户注意力资源,这种竞争关系影响了网络话题的传播和舆情的形成。已有的研究大多只针对单一话题的传播,该文研究了在线社会网络上多话题竞争的传播规律,提出多话题传播竞争特性的测量方法。从话题和用户这2个层面设计了话题竞争的资源数变化规律、话题竞争激烈程度、用户注意力的转移规律及话题相关性等的测量方法,提出了话题资源数波动率、话题竞争激烈度和用户注意力转移率等定量测量指标。通过对新浪微博真实数据的测量发现:多话题竞争中用户资源总数基本稳定,用户的注意力大部分是从老话题转移到新出现的话题且发生在同类话题间。这些测量结果为建立多话题传播模型提供了基础。
Abstract
Online social networks have many topics but people's attention spans are very limited, so the many topics compete for the scarce user attention spans. This competitive relationship affects the propagation of information and the formation of public opinions. Most existing research has focused on the spread of individual topics. This study investigates the spread of multiple topics and methods to quantitatively describe the competitive characteristics. Topic and user level methods are developed to measure resource changes, topic competition intensity, user attention transitions and topic relevance. Metrics are developed for the resource variation rate and the user attention transition rate. Measurements of the actual data collected from Sina Weibo show that the total user attention level is almost stable with most user attention transitions moving from existing topics to newly appearing topics and between similar topics. These measurements provide modeling of the multi-topic propagation processes.
关键词
在线社会网络 /
多话题传播 /
话题竞争 /
用户行为
Key words
online social networks /
multi-topic propagation /
topic competition /
user behavior
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Weng L, Flammini A, Vespignani A, et al. Competition among memes in a world with limited attention[J]. Scientific Reports, 2012, 2:335-343.
[2] Myers S A, Leskovec J. Clash of the contagions:Cooperation and competition in information diffusion[C]//Proceedings of the 12th IEEE International Conference on Data Mining. Brussels, Belgium:IEEE press, 2012:539-548.
[3] Huberman B A, Romero D M, Wu F. Social networks that matter:Twitter under the microscope[J]. First Monday, 2009, 14(1):47-61.
[4] Kwak H, Lee C, Park H, et al. What is Twitter, a social network or a news media[C]//Proceedings of the 19th International Conference on World Wide Web. New York, NY, USA:ACM press, 2010:591-600.
[5] Golder S A, Wilkinson D M, Huberman A. Rhythms of social interaction:Messaging within a massive online network[C]//Proceedings of the 3rd International Conference on Communities and Technologies. London, UK:Springer, 2007:41-66.
[6] Mislove A E. Online Social Networks:Measurement, Analysis, and Applications to Distributed Information Systems[D]. Houston, TX, USA:Rice University, 2009.
[7] 刘玮, 王丽宏, 李锐光. 面向话题的微博网络测量研究[J]. 通信学报, 2013, 34(11):171-178.LIU Wei, WANG Lihong, LI Ruiguang. Topic-oriented measurement of microblogging network[J].Journal on Communicaitons, 2013, 34(11):171-178.(in Chinese)
[8] 周亚东. 在线社会网络热点话题识别与动态传播建模与分析研究[D]. 西安:西安交通大学, 2011.ZHOU Yadong. Modeling and Analysis for Topic Detection and Group Dynamics over Online Social Networks[D]. Xi'an:Xi'an Jiaotong University, 2011.(in Chinese)
[9] Leskovec J, Backstrom L et al. Meme-tracking and the dynamics of the news cycle[C]//Proceedings of the 15th ACM International Conference on Knowledge Discovery and Data Mining. Paris, France:ACM press, 2009:497-506.
[10] Yang J, Leskovec J. Patterns of temporal variation in online media[C]//Proceedings of the 4th ACM International Coference on Web Search and Data Mining. Hongkong, China:ACM press, 2011:177-186.
[11] Bakshy E, Rosenn I, Marlow C, et al. The role of social networks in information diffusion[C]//Proceedings of the 21st International Conference on World Wide Web. Lyon, France:ACM press, 2012:519-528.
[12] Gonçalves B, Perra N, Vespignani A. Modeling users' activity on twitter networks:Validation of dunbar's number[J]. PLoS One, 2011, 6(8), e22656.
[13] Xu P, Wu Y, Wei E, etc. Visual analysis of topic competition on social media[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12):2012-2021.
[14] Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512.