移动通信系统平均物理层安全容量

李涛, 张焱, 许希斌, 周世东

清华大学学报(自然科学版) ›› 2015, Vol. 55 ›› Issue (11) : 1241-1245,1252.

PDF(1540 KB)
PDF(1540 KB)
清华大学学报(自然科学版) ›› 2015, Vol. 55 ›› Issue (11) : 1241-1245,1252. DOI: 10.16511/j.cnki.qhdxxb.2015.21.013
电子工程

移动通信系统平均物理层安全容量

  • 李涛1, 张焱2, 许希斌3, 周世东1,3
作者信息 +

Mean physical-layer secrecy capacity in mobile communication systems

  • LI Tao1, ZHANG Yan2, XU Xibin3, ZHOU Shidong1,3
Author information +
文章历史 +

摘要

为提升移动通信系统的安全性,研究了用户移动时的平均物理层安全容量。在实际传播环境中,用户移动会导致物理层安全容量在大范围内变化,因此提出合法用户平均物理层安全容量以刻画系统的安全通信性能。通过分析窃听者位置对平均物理层安全容量的影响,得到了平均物理层安全容量的分布特征。根据分布特征,提出了一种改善平均物理层安全容量的方案。该方案通过限制窃听者存在区域,保证用户平均物理层安全容量不低于指定值。理论和数值分析结果表明:所提方案可以有效地保障移动通信系统的平均物理层安全容量。

Abstract

The security of mobile communication systems depends on the mean physical-layer secrecy capacity as the user moves. In realistic propagation environments, the physical-layer secrecy capacity varies over a vast range because of the user motion. A mean physical-layer secrecy capacity of a legitimate user is defined to characterize the secure communication performance of the system. The distribution characteristics of the mean physical-layer secrecy capacity are derived based on the impact of the eavesdropper's position on the mean physical-layer secrecy capacity. A scheme is then given to improve the mean physical-layer secrecy capacity according to the distribution characteristics. The mean physical-layer secrecy capacity can be made to be not lower than a specified value by limiting the eavesdropper's positions. Theoretical and numerical results demonstrate that this scheme can effectively guarantee the mean physical-layer secrecy capacity in mobile communication systems.

关键词

移动通信 / 物理层安全 / 平均物理层安全容量

Key words

mobile communication / physical-layer security / mean physical-layer secrecy capacity

引用本文

导出引用
李涛, 张焱, 许希斌, 周世东. 移动通信系统平均物理层安全容量[J]. 清华大学学报(自然科学版). 2015, 55(11): 1241-1245,1252 https://doi.org/10.16511/j.cnki.qhdxxb.2015.21.013
LI Tao, ZHANG Yan, XU Xibin, ZHOU Shidong. Mean physical-layer secrecy capacity in mobile communication systems[J]. Journal of Tsinghua University(Science and Technology). 2015, 55(11): 1241-1245,1252 https://doi.org/10.16511/j.cnki.qhdxxb.2015.21.013
中图分类号: TP929.5   

参考文献

[1] Massey J L. An introduction to contemporary cryptology[J]. Proceedings of the IEEE, 1988, 76(5):533-549.
[2] Schneier B. Cryptographic design vulnerabilities[J]. Computer, 1998, 31(9):29-33.
[3] Shannon C E. Communication theory of secrecy systems[J]. Bell system technical journal, 1949, 28(4):656-715.
[4] Wyner A D. The wire-tap channel[J]. Bell System Technical Journal, 1975, 54(8):1355-1387.
[5] Leung-Yan-Cheong S, Hellman M E. The Gaussian wire-tap channel[J]. Information Theory, IEEE Transactions on, 1978, 24(4):451-456.
[6] Csiszár I, Korner J. Broadcast channels with confidential messages[J]. Information Theory, IEEE Transactions on, 1978, 24(3):339-348.
[7] Li Z, Yates R, Trappe W. Secret communication with a fading eavesdropper channel[C]//Information Theory, 2007. ISIT 2007. IEEE International Symposium on. Nice, Alpes-Maritimes, France:IEEE Press, 2007:1296-1300.
[8] Li Z, Yates R, Trappe W. Secrecy capacity of independent parallel channels. Proceedings of Proc. 44th Annu. Allerton Conf., Allerton House, Illinois, 2006. 841-848.
[9] Hero A O. Secure space-time communication[J]. Information Theory, IEEE Transactions on, 2003, 49(12):3235-3249.
[10] Pei Y, Liang Y C, Teh K C, et al. Secure communication in multiantenna cognitive radio networks with imperfect channel state information[J]. Signal Processing, IEEE Transactions on, 2011, 59(4):1683-1693.
[11] Negi R, Goel S. Secret communication using artificial noise[C]//IEEE Vehicular Technology Conference. Dallas, TX, USA:IEEE Press, 1999, 2005, 62(3):1906.
[12] Dong L, Han Z, Petropulu A P, et al. Improving wireless physical layer security via cooperating relays[J]. Signal Processing, IEEE Transactions on, 2010, 58(3):1875-1888.
[13] Jeong C, Kim I M, Kim D I. Joint secure beamforming design at the source and the relay for an amplify-and-forward MIMO untrusted relay system[J]. Signal Processing, IEEE Transactions on, 2012, 60(1):310-325.
[14] Liu R, Maric I, Spasojevic P, et al. Discrete memoryless interference and broadcast channels with confidential messages:Secrecy rate regions[J]. Information Theory, IEEE Transactions on, 2008, 54(6):2493-2507.
[15] Bagherikaram G, Motahari A S, Khandani A K. The secrecy capacity region of the Gaussian MIMO broadcast channel[J]. Information Theory, IEEE Transactions on, 2013, 59(5):2673-2682.
[16] Ekrem E, Ulukus S. The secrecy capacity region of the Gaussian MIMO multi-receiver wiretap channel[J]. Information Theory, IEEE Transactions on, 2011, 57(4):2083-2114.
[17] Liang Y, Poor H V. Multiple-access channels with confidential messages[J]. Information Theory, IEEE Transactions on, 2008, 54(3):976-1002.
[18] Tekin E, Yener A. The Gaussian multiple access wire-tap channel[J]. Information Theory, IEEE Transactions on, 2008, 54(12):5747-5755.
[19] Lai L, El Gamal H. The relay-eavesdropper channel:Cooperation for secrecy[J]. Information Theory, IEEE Transactions on, 2008, 54(9):4005-4019.
[20] Marina N, Bose R, Hjorungnes A. Increasing the secrecy capacity by cooperation in wireless networks[C]//Personal, Indoor and Mobile Radio Communications, 2009 IEEE 20th International Symposium on. Tokyo, Japan:IEEE Press, 2009:1978-1982.
[21] Marina N, Hjorungnes A. Characterization of the secrecy region of a single relay cooperative system[C]//Wireless Communications and Networking Conference(WCNC), 2010 IEEE. Sydney, Australia:IEEE Press, 2010:1-6.
[22] Li W, Ghogho M, Chen B, et al. Secure communication via sending artificial noise by the receiver:outage secrecy capacity/region analysis[J]. Communications Letters, IEEE, 2012, 16(10):1628-1631.

PDF(1540 KB)

Accesses

Citation

Detail

段落导航
相关文章

/