Abstract:Wastewater from dyeing and printing factories is difficult to treat. Such wastewater is often treated using activated sludge process, but the removal efficiency is not good. Many micronutrients play important roles in the metabolic activity of microorganisms in the activated sludge; thus, the micronutrients can affect the treatment efficiency of dyeing printing wastewater. Experiments were conducted to evaluate the effects of single metal elements, such as Mo, Zn and Co, and combinations of these metal elements on the treatment efficiency of dyeing printing wastewater and the SOUR of activated sludge using a sequencing batch reactor. The results show that dyeing printing wastewater lacks the Mo, Zn, Fe, Al and Co which are important for the metabolic activity of the microorganisms in the activated sludge. The biological treatment of dyeing printing wastewater can be very different depending on the species, concentration and form of the metal elements. When adding single metal elements into the reactor, the optimum concentrations of Mo, Zn, Fe, Al and Co were 0.3 mg/L, 0.3 mg/L, 0.4 mg/L, 0.5 mg/L and 4 mg/L. The removal rate of CODCr, relative to the rate without any micronutrients is increased 5.82% by Mo, 12.85% by Zn, 5.26% by Fe, 8.28% by Al and 9.66% by Co and the SOUR of the microbial activity in the activated sludge is increased 68.51% by Mo, 74.87% by Zn, 6.15% by Fe, 21.70% by Al and 71.64% by Co. The microorganism metabolic activity was increased by adding Mo, Zn and Co which improved the treatment efficiency. The improved treatment efficiency with Al and Fe was mainly due to the enhanced coagulation with these elements. The interactions of different micronutrients is difficult to predict in microbial communities. The anions of the metal salts had no effect on the biological effects of the trace metals.
周律, 彭标. 微量元素对工业废水好氧生物处理的促进[J]. 清华大学学报(自然科学版), 2015, 55(6): 653-659.
ZHOU Lu, PENG Biao. Effect of trace elements for improving the aerobic biological treatment of industrial wastewater. Journal of Tsinghua University(Science and Technology), 2015, 55(6): 653-659.
许丹宇, 石岩, 张洪雷. 印染废水处理与回用的工艺设计与应用 [J]. 给水排水, 2015, 41(03): 49-53.XU Danyu, SHI Yan, ZHANG Honglei. Design and application of dyeing wastewater treatment and its reuse [J]. Water&Wastewater Engineering, 2015, 41(03): 49-53. (in Chinese)
[2]
GB4287-2012. 纺织染整工业水污染物排放标准 [S]. 北京: 中华人民共和国环境保护部, 2013. GB4287-2012. Discharge Standards of Water Pollutants for Dyeing and Finishing of Textile Industry [S]. Beijing: Ministry of Environmental Protection of the People's Republic of China, 2013.(in Chinese)
[3]
王洁微. 光催化氧化提高难降解有机物可生化性的研究 [D]. 上海: 上海师范大学, 2013.WANG Jiewei. Photocatalysis for Enhanced Bioavailability of Recalcitrant Organic Compounds [D]. Shanghai: Shanghai Normal University, 2013.(in Chinese)
[4]
刘通, 张旭, 李广贺, 等. HUSB反应器提高以印染废水为主的城镇废水可生化性的研究 [J]. 环境工程学报, 2011, 5(08): 1707-1712.LIU Tong, ZHANG Xu, LI Guanghe, et al. Enhancement of biodegradability of municipal wastewater consisting mainly of dyeing and printing wastewater by hydrolysis upflow sludge bed [J]. Chinese Journal of Environmental Engineering, 2011, 5(08): 1707-1712.(in Chinese)
[5]
Grau P. Criteria for nutrient-balanced operation of activated sludge process [J]. Water Science and Technology, 1991, 34(24): 251-258.
[6]
LIANG Wei, HU Hongying, WANG Hui, et al. Effects of micronutrients on purification effects of textile wastewater [J]. Water&Wastewater Engineering. 2005, 31(11): 53-56.
[7]
Jefferson B, Burgess J E. Nutrient addition to enhance biological treatment of greywater [J]. Pergamon. 2001, 35(11): 2702-2710.
[8]
LIANG Wei, HU Hongying, YU Xing, et al. Effects of micronutrient Niacin on treatment efficiency of textile wastewater [J]. Wuhan University Journal of Natural Sciences, 2006, 11(3): 737-741.
[9]
LIANG Wei, HU Hongying, SONG Yu. Effects of thiamine on treatment performance of textile wastewater [J]. Desalination, 2009, 20(242): 110-114.
[10]
Esquivel-Rios I, González I. Microrespirometric characterization of activated sludge inhibition by copper and zinc [J]. Biodegradation, 2014. 25(6): 867-879.
[11]
HJ2036-2013. 染料工业废水治理工程技术规范 [S]. 北京: 中华人民共和国环境保护部, 2013.HJ2036-2013. Technical Specifications for Dyeing Industry Wastewater Treatment [S]. Beijing: Ministry of Environmental Protection of the People's Republic of China, 2013.(in Chinese)
[12]
洪青, 邵劲松, 沈标, 等. 蒽醌废水生化处理的活性污泥驯化 [J]. 环境污染与防治, 2006, 28(06): 422-424.HONG Qing, SHAO Jinsong, SHEN Biao, et al. Acclimation of activated sludge for treatment of anthraquinone wastewater [J]. Environmental Pollution & Control, 2006, 28(06): 422-424.(in Chinese)
[13]
于鑫, 张晓健, 刘晓玲, 等. 生物滤池中微生物的SOUR活性研究 [J]. 中国给水排水, 2004, 20(03): 16-20.YU Xing, ZHANG Xiaojian, LIU Xiaoling, et al. Microbal activity in biofilter determined by SOUR [J]. China Water&Wastewater, 2004, 20(03): 16-20.(in Chinese)
[14]
中华人民共和国环境保护部. 水和废水监测分析方法 [M]. 第四版. 北京: 中国环境科学出版社, 2002.Ministry of Environmental Protection of the People's Republic of China. Monitoring and Analyzing Methods of Water and Wastewater [M].4th Ed. Beijing: China Environmental Science Press, 2002.(in Chinese)
[15]
Burgess J E, Quarmby J, Stephenson T. Role of micronutrients in activated sludge-based biotreatment of industrial effluents [J]. Biotechnology Advances, 1999, 17(1): 49-70.
[16]
Engör S, Gikas P, Moberly J G, et al. Comparison of single and joint effects of Zn and Cu in continuous flow and batch reactors [J]. Journal of Chemical Technology & Biotechnology, 2012, 87(3): 374-380.
[17]
Burgess J E, Quarmby J, Stephenson T, et al. Micronutrient supplements for optimization of the treatment of industrial wastewater using activated sludge [J]. Water Research, 1999, 33(18): 2714-3707.