Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2015, Vol. 55 Issue (8): 849-853    
  电子工程 本期目录 | 过刊浏览 | 高级检索 |
基于岸线特征点合并的极化SAR图像小型港口检测
刘春, 殷君君, 杨健
清华大学 电子工程系, 北京 100084
Small harbor detection in polarimetric SAR images based on coastline feature point merging
LIU Chun, YIN Junjun, YANG Jian
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(2710 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了对极化合成孔径雷达(polSAR)图像中小型港口目标进行自动检测, 在分析小型港口特性的基础上, 提出了一种基于岸线特征点合并的检测方法。首先, 使用极化SAR图像水平集分割算法实现精确的海岸线提取, 并通过数字曲线分裂归并算法提取海岸线轮廓特征点; 然后针对小型港口轮廓特征点比非港口区域轮廓的密集的特性, 提出了一种岸线特征点合并算法实现港口检测。分别用RADARSAT-2系统获取的新加坡和湛江海岸区域极化SAR数据对提出方法进行了试验。实验结果表明, 该方法能够正确地检测沿岸小型港口。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘春
殷君君
杨健
关键词 合成孔径雷达港口检测极化水平集分割特征点合并    
Abstract:A method was developed to automatic detect small harbors in polarimetric synthetic aperture radar (polSAR) images using coastline feature point merging based on analyses of structural characteristics of harbors. The coastline is accurately extracted by level set segmentation algorithm of polSAR with the coastline feature points then detected with a split and merge algorithm for digital curves. Then, the algorithm takes advantage of the characteristic that feature points along small harbor contour are denser than those along other coastline contours using a merging algorithm to detect the small harbors. The detection scheme was tested using polarimetric SAR images acquired by RADARSAT-2 over Singapore and the Zhanjiang area of China. The results show that almost all the harbors along the coastline are correctly detected by this method.
Key wordssynthetic aperture radar    harbor detection    polarization    level set segmentation    point merge
收稿日期: 2015-03-18      出版日期: 2015-09-30
ZTFLH:  TN957.52  
通讯作者: 杨健,教授,E-mail:yangjian_ee@tsinghua.edu.cn     E-mail: yangjian_ee@tsinghua.edu.cn
引用本文:   
刘春, 殷君君, 杨健. 基于岸线特征点合并的极化SAR图像小型港口检测[J]. 清华大学学报(自然科学版), 2015, 55(8): 849-853.
LIU Chun, YIN Junjun, YANG Jian. Small harbor detection in polarimetric SAR images based on coastline feature point merging. Journal of Tsinghua University(Science and Technology), 2015, 55(8): 849-853.
链接本文:  
http://jst.tsinghuajournals.com/CN/  或          http://jst.tsinghuajournals.com/CN/Y2015/V55/I8/849
  图1 点对点的特征点合并算法
  图2 闭合海岸轮廓线起始与终止特征点距离过近情况
  图3 新加坡部分海岸区域港口检测结果
  图4 湛江部分海岸区域港口检测结果
[1] 陈琪. SAR 图像港口目标提取方法研究 [D]. 长沙: 国防科学技术大学, 2011.CHEN Qi. Harbor extraction from SAR imagery [D]. Changsha: NUDT, 2011. (in Chinese)
[2] 李艳, 彭嘉雄. 港口目标特征提取与识别 [J]. 华中科技大学学报: 自然科学版, 2001, 29(6): 9-11.LI Yan, PENG Jiaxiong. Feature extraction of the harbor target and its recognition [J]. Journal of Huazhong University of Science and Technology, 2001, 29(6): 9-11. (in Chinese)
[3] 陈琪, 陆军, 赵凌君, 等. 基于特征的 SAR 遥感图像港口检测方法 [J]. 电子与信息学报, 2010, 32(6): 2873-2878.CHEN Qi, LU Jun, ZHAO Lingjun, et al. Harbor detection method of SAR remote sensing images based on feature [J]. Journal of Electronics & information technology, 2010, 32(6): 2873-2878. (in Chinese)
[4] 张志龙, 张焱, 沈振康. 基于特征谱的高分辨率遥感图像港口识别方法 [J]. 电子学报, 2010, 38(9): 2184-2188.ZHANG Zhilong, ZHANG Yan, SHEN Zhenkang. Port recognition in high resolution remote sensing images based on feature spectrum [J]. Chinese Journal of Electronics, 2010, 38(9): 2184-2188. (in Chinese)
[5] 邢坤, 付宜利. 基于内港区域的港口目标识别 [J]. 电子与信息学报, 2009, 31(6): 1275-1278.XING Kun, FU Yili. Harbor target recognition based on inside region [J]. Journal of Electronics & information technology, 2009, 31(6): 1275-1278. (in Chinese)
[6] Douglas D H, Peucker T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature [J]. Cartographica: The International Journal for Geographic Information and Geovisualization, 1973, 10(2): 112-122.
[7] Mason D C, Davenport I J. Accurate and efficient determination of the shoreline in ERS-1 SAR images [J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(5): 1243-1253.
[8] Niedermeier A, Romaneessen E, Lehner S. Detection of coastlines in SAR images using wavelet methods [J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2270-2281.
[9] Ben Ayed I, Mitiche A, Belhadj Z. Polarimetric image segmentation via maximum-likelihood approximation and efficient multiphase level-sets [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(9): 1493-1500.
[10] Sonka M, Hlavac V, Boyle R. Image processing, analysis, and machine vision [M]. Toronto, Canada: Cengage Learning, 2014.
[11] Rosenfeld A, Johnston E. Angle detection on digital curves [J]. IEEE Transactions on Computers, 1973, 100(9): 875-878.
[12] Rosenfeld A, Weszka J S. An improved method of angle detection on digital curves [J]. IEEE Transactions on Computers, 1975, 24(9): 940-941.
[1] 杨倩文, 孙富春. 基于泛化空间正则自动编码器的遥感图像识别[J]. 清华大学学报(自然科学版), 2018, 58(2): 113-121.
[2] 刘春, 杨健, 徐丰, 范一大. 基于水域跟踪的极化SAR图像桥梁检测[J]. 清华大学学报(自然科学版), 2017, 57(12): 1303-1309.
[3] 高伟, 殷君君, 杨健. 基于Riemann核Fisher准则的极化SAR图像人造目标检测[J]. 清华大学学报(自然科学版), 2016, 56(9): 920-924,929.
[4] 焦智灏, 杨健, 叶春茂, 宋建社. 基于散射成分一致性参数的极化SAR图像分类[J]. 清华大学学报(自然科学版), 2016, 56(8): 908-912.
[5] 杨帆, 杨健, 殷君君, 宋建社. 基于极化SAR分解模型的油膜检测[J]. 清华大学学报(自然科学版), 2015, 55(8): 854-859.
[6] 宋胜利, 杨健. 基于鲁棒主成分分析的SAR舰船检测[J]. 清华大学学报(自然科学版), 2015, 55(8): 844-848.
[7] 李增辉, 常雯, 杨健. 基于外推陷波滤波的孤立强散射旁瓣抑制[J]. 清华大学学报(自然科学版), 2015, 55(5): 503-507.
[8] 马文婷,杨健,崔一,高伟. 地面高度起伏对SAR图像匹配性能影响的定量分析[J]. 清华大学学报(自然科学版), 2014, 54(4): 432-436.
[9] 游彪,杨健,叶春茂,宋建设. 改进的功率极化交叉熵舰船检测方法[J]. 清华大学学报(自然科学版), 2014, 54(4): 453-457.
[10] 常雯,李增辉,杨健. 基于迭代Radon-Wigner变换的FMCW-ISAR目标速度估计及速度补偿[J]. 清华大学学报(自然科学版), 2014, 54(4): 464-468.
[11] 马文婷, 杨健, 高伟, 周广益. 面向极化SAR图像配准的极化特征[J]. 清华大学学报(自然科学版), 2014, 54(2): 270-274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn