重油航空活塞发动机技术路线分析

冯光烁, 周明

清华大学学报(自然科学版) ›› 2016, Vol. 56 ›› Issue (10) : 1114-1121.

PDF(1079 KB)
PDF(1079 KB)
清华大学学报(自然科学版) ›› 2016, Vol. 56 ›› Issue (10) : 1114-1121. DOI: 10.16511/j.cnki.qhdxxb.2016.22.048
航天航空

重油航空活塞发动机技术路线分析

  • 冯光烁, 周明
作者信息 +

Assessment of heavy fuel aircraft piston engine types

  • FENG Guangshuo, ZHOU Ming
Author information +
文章历史 +

摘要

分析了重油航空活塞发动机的两条技术路线:点燃式(Otto循环)和压燃式(Diesel循环)。点燃式重油航空活塞发动机功重比较高,但是燃油消耗率高,存在爆震、起动困难、电磁兼容性较差、可靠性较低、功率覆盖范围较小等弱点。缸内直喷、气动喷嘴和高能点火技术是点燃式发动机需攻克的关键技术。压燃式重油航空活塞发动机燃油消耗率低、续航能力强、电磁兼容性较好、可靠性高、功率覆盖范围较大,但是功重比较低、振动较大。高功重比、先进电控及燃油喷射、可调高压比增压技术是压燃式发动机需攻克的关键技术。研究了目前重油航空活塞发动机的主要案例,结果表明:点燃式和压燃式方案均是可行的,且各有一些关键技术需要攻克,压燃式技术路线将是未来主流。

Abstract

The objective of this study is to assess spark ignition (Otto cycle) and compression ignition (Diesel cycle) engines as heavy fuel aircraft piston engines. Spark ignition aircraft engines give a higher power to weight ratio, but have higher specific fuel consumption (SFC), knocking, poor starting, higher electro magnetic interference (EMI), lower reliability and narrower power regions. Spark ignition systems use direct injection, pneumatic atomizers and high energy ignition systems. Compression ignition aircraft engines have lower SFC, improved range, lower EMI, higher reliability and wider power regions, but have worse power to weight ratios and more vibration. Compression ignition engines have advanced electronic controls, fuel injection systems and variable high-pressure ratio superchargers. The assessments show that both approaches are feasible with some technical challenges, with compression ignition engines as the more promising approach.

关键词

重油航空活塞发动机 / 技术路线 / 点燃式 / 压燃式

Key words

heavy fuel aircraft piston engine / technical approach / spark ignition / compression ignition

引用本文

导出引用
冯光烁, 周明. 重油航空活塞发动机技术路线分析[J]. 清华大学学报(自然科学版). 2016, 56(10): 1114-1121 https://doi.org/10.16511/j.cnki.qhdxxb.2016.22.048
FENG Guangshuo, ZHOU Ming. Assessment of heavy fuel aircraft piston engine types[J]. Journal of Tsinghua University(Science and Technology). 2016, 56(10): 1114-1121 https://doi.org/10.16511/j.cnki.qhdxxb.2016.22.048
中图分类号: V234   

参考文献

[1] Stewart W L, Weber R J, Willis E A, et al. NASA Research on General Aviation Power Plants [R]. AIAA 79-0561, 1979.
[2] Lawton J. Development of a Heavy Fuel Engine for an Unmanned Air Vehicle [R]. AIAA 90-2170, 1990.
[3] Kotsiopoulos P, Yfantis E, Lois E, et al. Diesel and JP-8 Fuel Performance on a Petter AV1 Diesel Engine [R]. AIAA 2001-0500, 2001.
[4] Weir D G. Strategic Implications for a Single-Fuel Concept [R]. AD-A308 981, 1996.
[5] Department of Defense. Directive 4140.25. DoD Management Policy of Energy Commodities and Related Service [R]. Department of Defense, USA, 2004.
[6] Senior NATO Logisticians' Conference (SNLC). NATO Logistics Handbook [R]. Brussels: North Atlantic Treaty Organization (NATO), 2007.
[7] Rozenkranc M, Ernst J. Tactical UAV Engines Integration in IAI [R]. AIAA 2003-6534, 2003.
[8] Palacios C F, Owens E C, Wood C D. Heavy Fuel Engine Technology Assessment [R]. AD-A337601, 1998.
[9] Glenn Research Center. Small Aircraft Propulsion: The Future Is Here [R]. NASA Facts FS-2000-04-001-GRC, 2000.
[10] 冯青, 李世武, 张丽. 工程热力学 [M]. 西安: 西北工业大学出版社, 2006. FENG Qing, LI Shiwu, ZHANG Li. Engineering Thermodynamics [M]. Xi'an: Northwestern Polytechnical University Press, 2006. (in Chinese)
[11] Suhy P J Jr, Morgan E J, Evers L W, et al. The Feasibility of a Kerosene Fueled Spark Ignited Two-Stroke Engine [R]. SAE Paper 911846, 1991.
[12] Falkowski D T, Abata D L, Cho P. The Performance of a Spark-Ignited Stratified-Charge Two Stroke Engine Operating on a Kerosene Based Aviation Fuel [R]. SAE Paper 972737, 1997.
[13] Cathcart G, Dickson G, Ahern S. The Application of Air-Assist Direct Injection for Spark-Ignited Heavy Fuel 2-Stroke and 4-Stroke Engines [R]. SAE Paper 2005-32-0065, 2005.
[14] Groenewegen J-R J, Litke P J, Wilson C W, et al. The Performance and Emissions Effects of Utilizing Heavy Fuels and Biodiesel in a Small Spark Ignition Internal Combustion Engine [R]. AIAA 2011-695, 2011.
[15] Lawton J, Maggio A, Brucato R. Unmanned Aerial Vehicle Heavy Fuel Engine Test [R]. AD-A284 332, 1993.
[16] McLanahan J C. Diesel Aircraft Engines: A Delayed Promise from the 1930's [R]. SAE Paper 1999-01-5583, 1999.
[17] Moynihan M E, Berenyi S G, Brouwers A P. An Update on High Output, Lightweight Diesel Engines for Aircraft Applications [R]. AIAA-83-1339, 1983.
[18] Brouwers A P. 150 and 300 kW Lightweight Diesel Aircraft Engine Design Study [R]. NASA Contractor Report 3260, 1980.
[19] Brouwers A P. 186 kW Lightweight Diesel Aircraft Engine Design Study [R]. NASA Contractor Report 3261, 1980.
[20] Brouwers A P. Lightweight Diesel Aircraft Engines for General Aviation [R]. AIAA-80-1238, 1980.
[21] Underwood S C. Performance and Emission Characteristics of an Aircraft Turbo Diesel Engine Using Jet-A Fuel [D]. Lawrence, KS, USA: University of Kansas, 2008.
[22] Weinzierl S, Wildemann R, Hanula B. The Design and Development of a Light-Weight High-Speed, Diesel Engine for Unmanned Aerial Vehicles [R]. SAE Paper 2002-01-0160, 2002.
[23] Fuchs M J, Weinzierl S M. Diesel Aircraft Engine. USA:7191742 B2. 2007.
[24] Widener S K, Gale N F, Boyer L, et al. A Heavy-Fueled Engine for Unmanned Aerial Vehicles [R]. SAE Paper 950773, 1995.

PDF(1079 KB)

Accesses

Citation

Detail

段落导航
相关文章

/