考虑混凝土损伤效应的销栓作用承载力计算模型

李鹏飞, 安雪晖, 何世钦, 陈宸

清华大学学报(自然科学版) ›› 2016, Vol. 56 ›› Issue (12) : 1255-1263.

PDF(1815 KB)
PDF(1815 KB)
清华大学学报(自然科学版) ›› 2016, Vol. 56 ›› Issue (12) : 1255-1263. DOI: 10.16511/j.cnki.qhdxxb.2016.25.035
水利水电工程

考虑混凝土损伤效应的销栓作用承载力计算模型

  • 李鹏飞1, 安雪晖1, 何世钦2, 陈宸2
作者信息 +

Mathematical model for dowel bearing capacity considering the effect of concrete damage

  • LI Pengfei1, AN Xuehui1, HE Shiqin2, CHEN Chen2
Author information +
文章历史 +

摘要

在已有钢筋销栓作用承载力计算模型的基础上,该文提出了考虑混凝土损伤效应的承载力计算模型,进行了11个试件的直接剪切实验,研究钢筋直径、混凝土抗压强度和保护层厚度对销栓作用承载性能的影响。基于实验和数值分析结果,率定混凝土局部受压损伤效应所造成的承载性能衰减并对常用模型进行修正。通过对不同保护层厚度试件的数值模拟,率定出破坏形态转化的关键影响因子,并在计算模型中加以考虑。将直接剪切实验和文献实验的结果与修正后的模型计算结果进行对比发现:该文提出的考虑损伤效应的计算模型可以准确地预测不同破坏模式下钢筋销栓作用的承载性能。

Abstract

The measured bearing capacities of dowels embedded in concrete were compared with existing formula for various conditions. A total of 11 specimens were tested to failure to investigate the effect of the bar diameter, concrete strength and concrete cover on the dowel bearing capacity. The effect of localized crushing of the concrete found from the experiment and numerical results was used to improve the formula accuracy. Specimens with different concrete covers were simulated to study the key parameters affecters the failure mechanisms. Comparisons of the analytical results with experimental data showed that the model gives good predictions for both failure mechanisms.

关键词

销栓作用 / 损伤效应 / 计算模型 / 混凝土保护层 / 有限元法

Key words

dowel action / damage effect / mathematical model / concrete cover / finite element method

引用本文

导出引用
李鹏飞, 安雪晖, 何世钦, 陈宸. 考虑混凝土损伤效应的销栓作用承载力计算模型[J]. 清华大学学报(自然科学版). 2016, 56(12): 1255-1263 https://doi.org/10.16511/j.cnki.qhdxxb.2016.25.035
LI Pengfei, AN Xuehui, HE Shiqin, CHEN Chen. Mathematical model for dowel bearing capacity considering the effect of concrete damage[J]. Journal of Tsinghua University(Science and Technology). 2016, 56(12): 1255-1263 https://doi.org/10.16511/j.cnki.qhdxxb.2016.25.035
中图分类号: TU312    TV32   

参考文献

"[1] 过镇海, 时旭东. 钢筋混凝土原理和分析[M]. 北京:清华大学出版社, 2003.GUO Zhenhai, SHI Xudong. Reinforced Concrete Theory and Analyse[M]. Beijing:Tsinghua University Press, 2003. (in Chinese) [2] Nakaki S D, Stanton J F, Sritharan S. An overview of the PRESSS five-story precast test building[J]. PCI Journal, 1999, 44(2):26-39. [3] Kulkarni S A, Li B, Yip W K. Finite element analysis of precast hybrid-steel concrete connections under cyclic loading[J]. Journal of Constructional Steel Research, 2008, 64(2):190-201. [4] 王锡财, 陈述恒, 李康龙. 丽江7.0级地震丽江县城房屋震害分析[J]. 地震研究, 1997, 20(4):417-423.WANG Xicai, CHEN Shuheng, LI Kanglong. House damage analyses in Lijiang town suffered from Lijiang M=7.0 earthquake[J]. Journal of Seismological Research, 1997, 20(4):417-423. (in Chinese). [5] Moradi A R, Soltani M, Tasnimi A. A simplified constitutive model for dowel action across RC cracks[J]. Journal of Advanced Concrete Technology, 2012, 10(8):264-277. [6] Maekawa K, Qureshi J. Behavior of embedded bars in concrete under combined axial pullout and transverse displacement[J]. Concrete Library International, 1996, 15(532):183-196. [7] Vintzeleou E N, Tassios T P. Mathematical models for dowel action under monotonic and cyclic conditions[J]. Magazine of Concrete Research, 1986, 38(134):13-22. [8] Vintzeleou E N, Tassios T P. Behavior of dowels under cyclic deformations[J]. ACI Structural Journal, 1987, 84(1):18-30. [9] Rasmussen B H. The carrying capacity of transversely loaded bolts and dowels embedded in concrete[J]. Bygningsstatiske Meddelser, 1963, 34(2):39-55. [10] Krefeld W J, Thurston C W. Contribution of longitudinal steel to shear resistance of reinforced concrete beams[J]. ACI Journal Proceedings, 1966, 63(3):325-344. [11] Houde J, Mirza M S. A finite element analysis of shear strength of reinforced concrete beams[J]. ACI Special Publication, 1974, 42(1):103-128. [12] Bauman T, Rusch H. Versuche zum studium der verd ubelungswirkung der biegezugbewehrung eines stahlbetonbalken[J]. Deutscher Ausschuss Fur Stahlbeton, Bulletin, 1970, 210(1):125-139. [13] Shima H, Chou L L, Okamura H. Micro and macro models for bond in reinforced concrete[J]. Journal of the Faculty of Engineering, 1987, 39(2):133-194. [14] Soroushian P, Obaseki K, Rojas M C. Bearing strength and stiffness of concrete under reinforcing bars[J]. ACI Materials Journal, 1987, 84(3):179-184. [15] Shang F, An X, Kawai S, et al. Open-slip coupled model for simulating three-dimensional bond behavior of reinforcing bars in concrete[J]. Computers and Concrete, 2010, 7(5):403-419. [16] Shang F, An X, Mishima T, et al. Three-dimensional nonlinear bond model incorporating transverse action in corroded RC members[J]. Journal of Advanced Concrete Technology, 2011, 9(1):89-102. [17] Dei Poli S, Di Prisco M, Gambarova P G. Shear response, deformations, and subgrade stiffness of a dowel bar embedded in concrete[J]. ACI Structural Journal, 1992, 89(6):665-675. [18] Dei Poli S, Di Prisco M, Gambarova P G. Cover and stirrup effects on the shear response of dowel bar embedded in concrete[J]. ACI Structural Journal, 1993, 90(4):441-450. [19] Millard S G, Johnson R P. Shear transfer across cracks in reinforced concrete due to aggregate interlock and to dowel action[J]. Magazine of Concrete Research, 1984, 36(126):9-21. [20] Soroushian P, Obaseki K, Rojas M C, et al. Analysis of dowel bars acting against concrete core[J]. Journal of the American Concrete Institute, 1986, 83(4):642-649. [21] Paulay T, Park R, Phillips M H. Horizontal construction joints in cast-in-place reinforced concrete[J]. ACI Special Publication, 1974, 42(2):599-616."

PDF(1815 KB)

Accesses

Citation

Detail

段落导航
相关文章

/